Spaces:
Paused
Paused
File size: 12,056 Bytes
824afbf 896572e 824afbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
from typing import Optional, Tuple, MutableMapping
from typing import Union
import math
from contextlib import nullcontext
import torch
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn.attention import SDPBackend
from einops import rearrange
from utils import si_module, default, exists, load_ckpt
CACHE_FILL_VALUE = -1
def get_cache_len(cache: Optional[Tensor]) -> int:
"""
cache: (batch, seq_len, 2, kv_heads, head_dim)
"""
if cache is None:
return 0
nonzeros = T.any(cache.flatten(2) != CACHE_FILL_VALUE, dim=-1)
length = nonzeros.sum(dim=-1).int()
assert T.all(length == length[0])
return length[0]
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin, offset: int = 0):
assert (
cos.shape[1] >= offset + x.shape[1]
), f"Offset and/or input sequence is too large,\
\n offset: {offset}, seq_len: {x.shape[1]}, max: {cos.shape[1]}"
cos_out = cos[:, offset : offset + x.shape[1], :, :]
sin_out = sin[:, offset : offset + x.shape[1], :, :]
return (x * cos_out) + (rotate_half(x) * sin_out)
# Adapted from https://github.com/foundation-model-stack/foundation-model-stack
class ShapeRotator:
def __init__(
self,
dim: int,
end: int,
theta: float = 10_000,
):
super().__init__()
self.dim = dim
self.ratio = theta
self.cached_freqs: MutableMapping[int, MutableMapping[int, torch.Tensor]] = {}
self.max_seq_len_cached: MutableMapping[int, int] = {}
self.ntk_scaling = False
self.max_seq_len = end
def compute_freqs_cis(self, device, max_seq_len=None):
alpha = 1
dev_idx = device.index
max_seq_len = default(max_seq_len, self.max_seq_len)
if dev_idx not in self.cached_freqs:
self.cached_freqs[dev_idx] = {}
if dev_idx not in self.max_seq_len_cached:
self.max_seq_len_cached[dev_idx] = 0
if self.max_seq_len_cached[dev_idx] > 0:
return 1
max_seq_len = max(max_seq_len, self.max_seq_len)
if (
1 in self.cached_freqs[dev_idx]
and max_seq_len <= self.max_seq_len_cached[dev_idx]
):
return 1
ratio = self.ratio
dim = self.dim
freqs = 1.0 / (ratio ** (torch.arange(0, dim, 2, device=device).float() / dim))
t = torch.arange(max_seq_len, device=device, dtype=freqs.dtype)
freqs = torch.einsum("i,j->ij", t, freqs)
emb = torch.cat((freqs, freqs), dim=-1).to(device)
cos_to_cache = emb.cos()[None, :, None, :]
sin_to_cache = emb.sin()[None, :, None, :]
self.max_seq_len_cached[dev_idx] = max_seq_len
self.cached_freqs[dev_idx][alpha] = torch.stack(
[
cos_to_cache,
sin_to_cache,
],
dim=-1,
)
return alpha
def rotate(
self,
q: Tensor,
k: Tensor,
offset: int = 0,
) -> Tuple[Tensor, Tensor]:
"""
Args
----
q : torch.Tensor
Embedded query tensor, expected size is B x S x H x Eh
k : torch.Tensor
Embedded query tensor, expected size is B x S x H x Eh
"""
assert len(q.size()) == 4
assert len(k.size()) == 4
seq_len = self.max_seq_len
alpha = self.compute_freqs_cis(q.device, seq_len)
freqs = self.cached_freqs[q.device.index][alpha]
freqs = freqs.float() # 1 L D/2 2 2
q_out = apply_rotary_pos_emb(q, freqs[..., 0], freqs[..., 1], offset=offset).type_as(q)
k_out = apply_rotary_pos_emb(k, freqs[..., 0], freqs[..., 1], offset=offset).type_as(k)
return q_out.view_as(q), k_out.view_as(k)
class Linear(nn.Linear):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, bias=False)
class Norm(nn.Module):
def __init__(self,
dim: int,
eps: float = 1e-5,) -> None:
super().__init__()
self.eps = eps
self.weight = nn.Parameter(T.ones((dim,)))
def forward(self, input: Tensor) -> Tensor:
return F.layer_norm(input, (self.weight.shape[0],), weight=self.weight, bias=None, eps=self.eps)
class FFNN(nn.Module):
def __init__(self,
dim: int,
expand_dim: int = None,):
super().__init__()
expand_dim = default(expand_dim, 256 * ((int(2 * 4 * dim / 3) + 256 - 1) // 256))
self.dim = dim
self.expand_dim = expand_dim
self.gateup_proj = Linear(dim, 2*expand_dim)
self.down_proj = Linear(expand_dim, dim)
def forward(self, x):
gate, up = self.gateup_proj(x).chunk(2, dim=-1)
return self.down_proj(up * F.silu(gate))
class GQA(nn.Module):
def __init__(self,
dim: int,
n_head: int,
shape_rotator: ShapeRotator,
kv_heads: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,):
super().__init__()
self.n_heads = n_head
self.kv_heads = default(kv_heads, n_head)
self.head_dim = dim // n_head
self.causal = causal
self.proj_qkv = Linear(dim, self.head_dim*(n_head+2*self.kv_heads))
self.norm_q = Norm(self.head_dim*n_head, eps=eps)
self.norm_k = Norm(self.head_dim*self.kv_heads, eps=eps)
self.attn_out = Linear(dim, dim)
self.shape_rotator = shape_rotator
def _sdpa(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
k = k.repeat_interleave(self.n_heads // self.kv_heads, dim=2)
v = v.repeat_interleave(self.n_heads // self.kv_heads, dim=2)
x = F.scaled_dot_product_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
is_causal=False if (q.size(1) != k.size(1)) else self.causal,
)
x = x.transpose(1, 2).contiguous()
return x
def _attend(self, q: Tensor, k: Tensor, v: Tensor, kv_cache: Optional[Tensor] = None,):
cache_len = get_cache_len(kv_cache)
q, k = self.shape_rotator.rotate(q, k, offset=cache_len)
if exists(kv_cache):
k = T.cat([kv_cache[:, :cache_len, 0], k], dim=1)
v = T.cat([kv_cache[:, :cache_len, 1], v], dim=1)
kv_cache[:, :k.size(1), 0] = k
kv_cache[:, :v.size(1), 1] = v
x = self._sdpa(q, k, v)
return self.attn_out(rearrange(x, 'b s h d -> b s (h d)'))
def _project(self, x):
full_q, full_k, full_v = self.proj_qkv(x).chunk(3, dim=-1)
normed_full_q = self.norm_q(full_q).to(full_q.dtype)
normed_full_k = self.norm_k(full_k).to(full_k.dtype)
q = rearrange(normed_full_q, 'b s (h d) -> b s h d', h=self.n_heads)
k = rearrange(normed_full_k, 'b s (h d) -> b s h d', h=self.kv_heads)
v = rearrange(full_v, 'b s (h d) -> b s h d', h=self.kv_heads)
return q, k, v
def forward(self,
x: Tensor,
kv: Optional[Tensor] = None,):
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
q, k, v = self._project(x)
return self._attend(q, k, v, kv_cache=kv)
class PreNormAttn(nn.Module):
def __init__(self,
dim: int,
n_head: int,
shape_rotator: ShapeRotator,
kv_heads: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,):
super().__init__()
self.attn_norm = Norm(dim, eps=eps)
self.attn = GQA(dim, n_head, shape_rotator, kv_heads, eps=eps, causal=causal)
def forward(self, x: Tensor, kv: Optional[Tensor] = None) -> Tensor:
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
return x + self.attn(self.attn_norm(x), kv)
class PreNormFFNN(nn.Module):
def __init__(self,
dim: int,
ff_dim: int,
eps: float = 1e-5,):
super().__init__()
self.ffnn_norm = Norm(dim, eps=eps)
self.ffnn = FFNN(dim, ff_dim)
def forward(self, x: Tensor) -> Tensor:
return x + self.ffnn(self.ffnn_norm(x))
class Block(nn.Module):
def __init__(self,
dim: int,
layer_id: int = 0,
n_head: int = 16,
kv_heads: Optional[int] = None,
ff_dim: Optional[int] = None,
eps: float = 1e-5,
causal: bool = True,
shape_rotator: ShapeRotator = None):
super().__init__()
self.attn = PreNormAttn(dim, n_head, shape_rotator, kv_heads, eps=eps, causal=causal)
self.ffnn = PreNormFFNN(dim, ff_dim, eps=eps)
self.dim = dim
self.layer_id = layer_id
self.head_dim = dim // n_head
self.expand_dim = self.ffnn.ffnn.expand_dim
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.dim)
nn.init.trunc_normal_(self.ffnn.ffnn.gateup_proj.weight, std=std, a=-3 * std, b=3 * std)
nn.init.trunc_normal_(self.attn.attn.proj_qkv.weight, std=std, a=-3 * std, b=3 * std)
nn.init.trunc_normal_(self.attn.attn.attn_out.weight, std=std, a=-3 * std, b=3 * std)
xstd = 1.0 / math.sqrt(self.expand_dim)
nn.init.trunc_normal_(self.ffnn.ffnn.down_proj.weight, std=xstd, a=-3 * xstd, b=3 * xstd)
def forward(self, x: Tensor, kv: Optional[Tensor] = None) -> Tensor:
"""
x: (B, S, D)
kv: (B, S, H, D)
"""
h = self.attn(x, kv)
out = self.ffnn(h)
return out
class GPTOutput(nn.Module):
def __init__(self, dim, vocab_size):
super().__init__()
self.dim = dim
self.norm = Norm(dim)
self.output = Linear(dim, vocab_size)
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.dim**2)
nn.init.trunc_normal_(self.output.weight, std=std, a=-3 * std, b=3 * std)
def forward(self, x):
return self.output(self.norm(x))
@si_module
class Stack(nn.Module):
class Config:
layers: int
dim: int
seq_len: int
n_head: int = 32
ff_dim: int = None
kv_heads: int = None
eps: float = 1e-5
theta: Union[int, float] = 10_000
causal: bool = True
from_pretrained: Optional[Tuple[str, int]] = None
def __init__(self, c: Config):
super().__init__()
from_pretrained = c.from_pretrained
if exists(from_pretrained):
checkpoint = load_ckpt(c.from_pretrained)
self.shape_rotator = ShapeRotator(c.dim//c.n_head, c.seq_len, theta=c.theta)
self.layers = nn.ModuleList([
Block(
dim=c.dim,
layer_id=l,
n_head=c.n_head,
kv_heads=c.kv_heads,
ff_dim=c.ff_dim,
eps=c.eps,
causal=c.causal,
shape_rotator=self.shape_rotator,
) for l in range(c.layers)
])
kv_heads = c.kv_heads or c.n_head
head_dim = c.dim // c.n_head
cache_shape = [c.layers, c.seq_len, 2, kv_heads, head_dim]
self.cache_shape = cache_shape
self.cache = [None] * c.layers
if exists(from_pretrained):
self.load_state_dict(checkpoint)
def init_cache(self, bsize, device, dtype, length:int=None):
if self.cache_shape is None:
return
cache_shape = self.cache_shape.copy()
cache_shape[1] = length or cache_shape[1]
self.cache = T.full((bsize, *cache_shape), CACHE_FILL_VALUE, device=device, dtype=dtype).transpose(0, 1)
def deinit_cache(self):
self.cache = [None] * len(self.cache)
def forward(self, x: Tensor) -> Tensor:
for l, layer in enumerate(self.layers):
x = layer(x, kv=self.cache[l])
return x |