jeonghin commited on
Commit
0c0bb1b
·
1 Parent(s): c819284

Rollback to current version

Browse files
Files changed (1) hide show
  1. app_function.py +7 -23
app_function.py CHANGED
@@ -39,17 +39,9 @@ def get_vectorstore(text_chunks):
39
  Returns:
40
  - FAISS: A FAISS vector store containing the embeddings of the text chunks.
41
  """
42
- try:
43
- embeddings = OpenAIEmbeddings(
44
- openai_api_base="https://openai.vocareum.com/v1",
45
- openai_api_key=OPENAI_API_KEY,
46
- )
47
- except:
48
- embeddings = OpenAIEmbeddings(
49
- openai_api_base="https://openai.vocareum.com/v1",
50
- openai_api_key=OPENAI_API_KEY2,
51
- )
52
-
53
  vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
54
  return vectorstore
55
 
@@ -65,18 +57,10 @@ def get_conversation_chain(vectorstore):
65
  Returns:
66
  - ConversationalRetrievalChain: An initialized conversational chain object.
67
  """
68
- try:
69
- llm = ChatOpenAI(
70
- model_name="gpt-4-1106-preview",
71
- openai_api_base="https://openai.vocareum.com/v1",
72
- openai_api_key=OPENAI_API_KEY,
73
- )
74
- except:
75
- llm = ChatOpenAI(
76
- model_name="gpt-4-1106-preview",
77
- openai_api_base="https://openai.vocareum.com/v1",
78
- openai_api_key=OPENAI_API_KEY2,
79
- )
80
 
81
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
82
  conversation_chain = ConversationalRetrievalChain.from_llm(
 
39
  Returns:
40
  - FAISS: A FAISS vector store containing the embeddings of the text chunks.
41
  """
42
+ embeddings = OpenAIEmbeddings(
43
+ openai_api_base="https://openai.vocareum.com/v1",
44
+ )
 
 
 
 
 
 
 
 
45
  vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
46
  return vectorstore
47
 
 
57
  Returns:
58
  - ConversationalRetrievalChain: An initialized conversational chain object.
59
  """
60
+ llm = ChatOpenAI(
61
+ model_name="gpt-4-1106-preview",
62
+ openai_api_base="https://openai.vocareum.com/v1",
63
+ )
 
 
 
 
 
 
 
 
64
 
65
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
66
  conversation_chain = ConversationalRetrievalChain.from_llm(