jeonghin
commited on
Commit
·
5738ae0
1
Parent(s):
f521560
Deployable version
Browse files- app.py +12 -0
- app_function.py +258 -0
- choosingdata.py +75 -0
- data.json +0 -0
- requirements.txt +111 -0
app.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from app_function import *
|
2 |
+
|
3 |
+
|
4 |
+
def main():
|
5 |
+
init()
|
6 |
+
page_title()
|
7 |
+
chat_sidebar()
|
8 |
+
chat()
|
9 |
+
|
10 |
+
|
11 |
+
if __name__ == "__main__":
|
12 |
+
main()
|
app_function.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_js_eval import streamlit_js_eval
|
3 |
+
import choosingdata as choice
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_openai import ChatOpenAI
|
9 |
+
from langchain_openai import OpenAIEmbeddings
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain_community.llms import HuggingFaceHub
|
13 |
+
|
14 |
+
|
15 |
+
def get_text_chunks(text):
|
16 |
+
"""
|
17 |
+
Splits the given text into chunks based on specified character settings.
|
18 |
+
|
19 |
+
Parameters:
|
20 |
+
- text (str): The text to be split into chunks.
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
- list: A list of text chunks.
|
24 |
+
"""
|
25 |
+
text_splitter = CharacterTextSplitter(
|
26 |
+
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
|
27 |
+
)
|
28 |
+
chunks = text_splitter.split_text(text)
|
29 |
+
return chunks
|
30 |
+
|
31 |
+
|
32 |
+
def get_vectorstore(text_chunks):
|
33 |
+
"""
|
34 |
+
Generates a vector store from a list of text chunks using specified embeddings.
|
35 |
+
|
36 |
+
Parameters:
|
37 |
+
- text_chunks (list of str): Text segments to convert into vector embeddings.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
- FAISS: A FAISS vector store containing the embeddings of the text chunks.
|
41 |
+
"""
|
42 |
+
embeddings = OpenAIEmbeddings(
|
43 |
+
openai_api_base="https://openai.vocareum.com/v1",
|
44 |
+
)
|
45 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
46 |
+
return vectorstore
|
47 |
+
|
48 |
+
|
49 |
+
def get_conversation_chain(vectorstore):
|
50 |
+
"""
|
51 |
+
Initializes a conversational retrieval chain that uses a large language model
|
52 |
+
for generating responses based on the provided vector store.
|
53 |
+
|
54 |
+
Parameters:
|
55 |
+
- vectorstore (FAISS): A vector store to be used for retrieving relevant content.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
- ConversationalRetrievalChain: An initialized conversational chain object.
|
59 |
+
"""
|
60 |
+
llm = ChatOpenAI(
|
61 |
+
model_name="gpt-4-1106-preview",
|
62 |
+
openai_api_base="https://openai.vocareum.com/v1",
|
63 |
+
)
|
64 |
+
|
65 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
66 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
67 |
+
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
|
68 |
+
)
|
69 |
+
return conversation_chain
|
70 |
+
|
71 |
+
|
72 |
+
def set_prompt(text_block):
|
73 |
+
"""
|
74 |
+
Callback function that sets the chosen prompt in the session state.
|
75 |
+
|
76 |
+
Parameters:
|
77 |
+
- text_block (str): The prompt text selected by the user.
|
78 |
+
"""
|
79 |
+
st.session_state["messages"].append({"role": "user", "content": text_block})
|
80 |
+
st.session_state["prompts"] = text_block
|
81 |
+
|
82 |
+
|
83 |
+
def prompts():
|
84 |
+
"""
|
85 |
+
Renders clickable buttons for predefined prompts in the Streamlit application,
|
86 |
+
allowing the user to select a prompt to send to the conversation chain.
|
87 |
+
"""
|
88 |
+
potential_prompts = [
|
89 |
+
f"What is the meaning of the song {st.session_state['title']} by {st.session_state['artist']}?",
|
90 |
+
f"What is the most difficult English grammar point in the song {st.session_state['title']} by {st.session_state['artist']}? Can you explain it?",
|
91 |
+
f"What is the most common English word in the song {st.session_state['title']} by {st.session_state['artist']} (excluding stopwords)? Can you give some example sentences using that word?",
|
92 |
+
f"What is the most worth learning English phrase in the song {st.session_state['title']} by {st.session_state['artist']}? Can you explain it and provide practical example using the phrase?",
|
93 |
+
]
|
94 |
+
chosen_prompt = None
|
95 |
+
for index, text_block in enumerate(potential_prompts):
|
96 |
+
st.button(
|
97 |
+
f"Prompt {index + 1}: {text_block}", on_click=set_prompt, args=(text_block,)
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
def get_lyrics():
|
102 |
+
"""
|
103 |
+
Retrieves the lyrics stored in the session state.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
- str: The lyrics of the currently selected song.
|
107 |
+
"""
|
108 |
+
lyrics = st.session_state["lyrics"]
|
109 |
+
return lyrics
|
110 |
+
|
111 |
+
|
112 |
+
def page_title():
|
113 |
+
"""
|
114 |
+
Sets the title of the Streamlit page based on the selected song and artist.
|
115 |
+
"""
|
116 |
+
if st.session_state["title"] and st.session_state["artist"]:
|
117 |
+
st.title(
|
118 |
+
f'🎵 English Music Recommender 💬 ({st.session_state["title"]} by {st.session_state["artist"]})'
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
st.title("🎵 English Music Recommender 💬")
|
122 |
+
|
123 |
+
|
124 |
+
def chat_sidebar():
|
125 |
+
"""
|
126 |
+
Renders the sidebar in the Streamlit application for selecting music preferences
|
127 |
+
and handling song recommendations.
|
128 |
+
"""
|
129 |
+
with st.sidebar:
|
130 |
+
st.title("💚 Music Preferences")
|
131 |
+
|
132 |
+
user_difficulty = st.sidebar.radio(
|
133 |
+
"Choose a difficulty level:", ("Easy", "Medium", "Hard")
|
134 |
+
)
|
135 |
+
|
136 |
+
user_danceability = st.sidebar.radio(
|
137 |
+
"How much do you want to dance?", ("Low", "Medium", "High")
|
138 |
+
)
|
139 |
+
|
140 |
+
user_valence = st.sidebar.radio(
|
141 |
+
"What energy are you feeling?", ("Negative", "Neutral", "Positive")
|
142 |
+
)
|
143 |
+
|
144 |
+
if not st.session_state["song_bool"]:
|
145 |
+
|
146 |
+
if st.sidebar.button("Submit"):
|
147 |
+
recommendations = choice.recommendation(
|
148 |
+
choice.df,
|
149 |
+
dance_choice=user_danceability,
|
150 |
+
valence_choice=user_valence,
|
151 |
+
difficulty_choice=user_difficulty,
|
152 |
+
)
|
153 |
+
|
154 |
+
st.session_state["title"] = recommendations["title"].values[0]
|
155 |
+
st.session_state["artist"] = recommendations["artist"].values[0]
|
156 |
+
st.session_state["lyrics"] = recommendations["lyrics"].values[0]
|
157 |
+
st.session_state["id"] = (
|
158 |
+
f'https://open.spotify.com/track/{recommendations["id"].values[0]}'
|
159 |
+
)
|
160 |
+
st.session_state["song_bool"] = True
|
161 |
+
|
162 |
+
st.rerun()
|
163 |
+
|
164 |
+
else:
|
165 |
+
if st.session_state["song_bool"]:
|
166 |
+
|
167 |
+
st.write("### We would recommend you...")
|
168 |
+
st.write(f"## {st.session_state['title']}")
|
169 |
+
st.write(f" by {st.session_state['artist']}")
|
170 |
+
st.markdown(
|
171 |
+
f'<a href="{st.session_state["id"]}"><img src="{st.session_state["icon"]}" alt="Clickable image" style="height:60px;"></a>',
|
172 |
+
unsafe_allow_html=True,
|
173 |
+
)
|
174 |
+
st.write("Please refresh the page for a new recommendation.")
|
175 |
+
if st.button("Reload page"):
|
176 |
+
streamlit_js_eval(js_expressions="parent.window.location.reload()")
|
177 |
+
|
178 |
+
|
179 |
+
def chat():
|
180 |
+
"""
|
181 |
+
Manages the chat interface in the Streamlit application, handling the conversation
|
182 |
+
flow and displaying the chat history.
|
183 |
+
"""
|
184 |
+
if st.session_state["lyrics"]:
|
185 |
+
|
186 |
+
text_chunks = get_text_chunks(get_lyrics())
|
187 |
+
vectorstore = get_vectorstore(text_chunks)
|
188 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
189 |
+
|
190 |
+
if len(st.session_state.messages) == 1:
|
191 |
+
message = st.session_state.messages[0]
|
192 |
+
with st.chat_message(message["role"]):
|
193 |
+
st.write(message["content"])
|
194 |
+
prompts()
|
195 |
+
|
196 |
+
else:
|
197 |
+
for message in st.session_state.messages:
|
198 |
+
with st.chat_message(message["role"]):
|
199 |
+
st.write(message["content"])
|
200 |
+
|
201 |
+
# User-provided prompt
|
202 |
+
if prompt := st.chat_input():
|
203 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
204 |
+
st.session_state.prompts = prompt
|
205 |
+
with st.chat_message("user"):
|
206 |
+
st.write(prompt)
|
207 |
+
|
208 |
+
if st.session_state.messages[-1]["role"] != "system":
|
209 |
+
|
210 |
+
with st.chat_message("system"):
|
211 |
+
with st.spinner("Generating response..."):
|
212 |
+
response = st.session_state.conversation.invoke(
|
213 |
+
{"question": st.session_state.prompts}
|
214 |
+
)
|
215 |
+
st.session_state.chat_history = response["chat_history"]
|
216 |
+
message = st.session_state.chat_history[-1]
|
217 |
+
st.write(message.content)
|
218 |
+
message = {"role": "system", "content": message.content}
|
219 |
+
st.session_state.messages.append(message)
|
220 |
+
|
221 |
+
else:
|
222 |
+
st.write("You can chat with GPT once a song has been recommended to you!")
|
223 |
+
|
224 |
+
|
225 |
+
def init():
|
226 |
+
"""
|
227 |
+
Initializes the session state variables used in the Streamlit application and
|
228 |
+
loads environment variables.
|
229 |
+
"""
|
230 |
+
load_dotenv()
|
231 |
+
|
232 |
+
if "title" not in st.session_state:
|
233 |
+
st.session_state["title"] = ""
|
234 |
+
if "artist" not in st.session_state:
|
235 |
+
st.session_state["artist"] = ""
|
236 |
+
if "icon" not in st.session_state:
|
237 |
+
st.session_state["icon"] = (
|
238 |
+
"https://thereceptionist.com/wp-content/uploads/2021/02/Podcast-Listen-On-Spotify-1.png"
|
239 |
+
)
|
240 |
+
if "id" not in st.session_state:
|
241 |
+
st.session_state["id"] = ""
|
242 |
+
if "song_bool" not in st.session_state:
|
243 |
+
st.session_state["song_bool"] = False
|
244 |
+
if "messages" not in st.session_state.keys():
|
245 |
+
st.session_state.messages = [
|
246 |
+
{
|
247 |
+
"role": "system",
|
248 |
+
"content": "What do you want to learn about? Here are some suggested prompts: ",
|
249 |
+
}
|
250 |
+
]
|
251 |
+
if "conversation" not in st.session_state:
|
252 |
+
st.session_state.conversation = None
|
253 |
+
if "chat_history" not in st.session_state:
|
254 |
+
st.session_state.chat_history = None
|
255 |
+
if "lyrics" not in st.session_state:
|
256 |
+
st.session_state["lyrics"] = ""
|
257 |
+
if "prompts" not in st.session_state:
|
258 |
+
st.session_state["prompts"] = ""
|
choosingdata.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
df = pd.read_json('data.json')
|
4 |
+
|
5 |
+
percentiles = df['danceability'].quantile([0, 0.33, 0.66, 1])
|
6 |
+
bins = [percentiles.iloc[0], percentiles.iloc[1], percentiles.iloc[2], percentiles.iloc[3]]
|
7 |
+
labels = ['Low', 'Medium', 'High']
|
8 |
+
df['danceability_level'] = pd.cut(df['danceability'], bins=bins, labels=labels, include_lowest=True)
|
9 |
+
|
10 |
+
percentiles = df['valence'].quantile([0, 0.33, 0.66, 1])
|
11 |
+
bins = [percentiles.iloc[0], percentiles.iloc[1], percentiles.iloc[2], percentiles.iloc[3]]
|
12 |
+
labels = ['Low', 'Medium', 'High']
|
13 |
+
df['valence_level'] = pd.cut(df['valence'], bins=bins, labels=labels, include_lowest=True)
|
14 |
+
|
15 |
+
percentiles = df['speechiness'].quantile([0, 0.33, 0.66, 1])
|
16 |
+
bins = [percentiles.iloc[0], percentiles.iloc[1], percentiles.iloc[2], percentiles.iloc[3]]
|
17 |
+
labels = [1, 2, 3]
|
18 |
+
df['speechiness_level'] = pd.cut(df['speechiness'], bins=bins, labels=labels, include_lowest=True).astype(int)
|
19 |
+
|
20 |
+
percentiles = df['fres'].quantile([0, 0.33, 0.66, 1])
|
21 |
+
bins = [percentiles.iloc[0], percentiles.iloc[1], percentiles.iloc[2], percentiles.iloc[3]]
|
22 |
+
labels = [1, 2, 3]
|
23 |
+
df['fres_level'] = pd.cut(df['fres'], bins=bins, labels=labels, include_lowest=True).astype(int)
|
24 |
+
|
25 |
+
percentiles = df['vocabComplex'].quantile([0, 0.33, 0.66, 1])
|
26 |
+
bins = [percentiles.iloc[0], percentiles.iloc[1], percentiles.iloc[2], percentiles.iloc[3]]
|
27 |
+
labels = [1, 2, 3]
|
28 |
+
df['vocabComplex_level'] = pd.cut(df['vocabComplex'], bins=bins, labels=labels, include_lowest=True).astype(int)
|
29 |
+
|
30 |
+
percentiles = df['avgSyllable'].quantile([0, 0.33, 0.66, 1])
|
31 |
+
bins = [percentiles.iloc[0], percentiles.iloc[1], percentiles.iloc[2], percentiles.iloc[3]]
|
32 |
+
labels = [1, 2, 3]
|
33 |
+
df['avgSyllable_level'] = pd.cut(df['avgSyllable'], bins=bins, labels=labels, include_lowest=True).astype(int)
|
34 |
+
|
35 |
+
df['difficulty'] = df['speechiness_level'] + df['fres_level'] + df['vocabComplex_level'] + df['avgSyllable_level']
|
36 |
+
|
37 |
+
percentiles = df['difficulty'].quantile([0, 0.33, 0.66, 1])
|
38 |
+
bins = [percentiles.iloc[0], percentiles.iloc[1], percentiles.iloc[2], percentiles.iloc[3]]
|
39 |
+
labels = ["Low", "Medium", "High"]
|
40 |
+
df['difficulty_level'] = pd.cut(df['difficulty'], bins=bins, labels=labels, include_lowest=True)
|
41 |
+
|
42 |
+
# dance_choice = input("Which level do you want for danceability?")
|
43 |
+
# valence_choice = input("Which level do you want for valence?")
|
44 |
+
# difficulty_choice = input("Which level do you want for the difficulty?")
|
45 |
+
|
46 |
+
def recommendation(df, dance_choice, valence_choice, difficulty_choice):
|
47 |
+
if dance_choice == "Low":
|
48 |
+
df = df[df['danceability_level'] == "Low"]
|
49 |
+
|
50 |
+
elif dance_choice == "Medium":
|
51 |
+
df = df[df['danceability_level'] == "Medium"]
|
52 |
+
|
53 |
+
elif dance_choice == "High":
|
54 |
+
df = df[df['danceability_level'] == "High"]
|
55 |
+
|
56 |
+
if valence_choice == "Negative":
|
57 |
+
df = df[df['valence_level'] == "Low"]
|
58 |
+
|
59 |
+
elif valence_choice == "Neutral":
|
60 |
+
df = df[df['valence_level'] == "Medium"]
|
61 |
+
|
62 |
+
elif valence_choice == "Positive":
|
63 |
+
df = df[df['valence_level'] == "High"]
|
64 |
+
|
65 |
+
if difficulty_choice == "Easy":
|
66 |
+
df = df[df['difficulty_level'] == "Low"]
|
67 |
+
|
68 |
+
elif difficulty_choice == "Medium":
|
69 |
+
df = df[df['difficulty_level'] == "Medium"]
|
70 |
+
|
71 |
+
elif difficulty_choice == "Hard":
|
72 |
+
df = df[df['difficulty_level'] == "High"]
|
73 |
+
|
74 |
+
chosen = df.sample() # random choose 1 song
|
75 |
+
return chosen
|
data.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohttp==3.9.3
|
2 |
+
aiosignal==1.3.1
|
3 |
+
altair==4.0.0
|
4 |
+
anyio==4.3.0
|
5 |
+
appnope==0.1.4
|
6 |
+
asttokens==2.4.1
|
7 |
+
attrs==23.2.0
|
8 |
+
beautifulsoup4==4.12.3
|
9 |
+
blinker==1.7.0
|
10 |
+
bs4==0.0.2
|
11 |
+
cachetools==5.3.3
|
12 |
+
certifi==2023.11.17
|
13 |
+
charset-normalizer==3.3.2
|
14 |
+
click==8.1.7
|
15 |
+
comm==0.2.2
|
16 |
+
dataclasses-json==0.5.14
|
17 |
+
debugpy==1.8.1
|
18 |
+
decorator==5.1.1
|
19 |
+
distro==1.9.0
|
20 |
+
entrypoints==0.4
|
21 |
+
executing==2.0.1
|
22 |
+
faiss-cpu==1.7.4
|
23 |
+
frozenlist==1.4.1
|
24 |
+
gitdb==4.0.11
|
25 |
+
GitPython==3.1.43
|
26 |
+
h11==0.14.0
|
27 |
+
httpcore==1.0.5
|
28 |
+
httpx==0.27.0
|
29 |
+
hugchat==0.4.1
|
30 |
+
idna==3.6
|
31 |
+
ipykernel==6.29.3
|
32 |
+
ipython==8.22.2
|
33 |
+
jedi==0.19.1
|
34 |
+
Jinja2==3.1.3
|
35 |
+
joblib==1.4.0
|
36 |
+
jsonpatch==1.33
|
37 |
+
jsonpointer==2.4
|
38 |
+
jsonschema==4.21.1
|
39 |
+
jsonschema-specifications==2023.12.1
|
40 |
+
jupyter_client==8.6.1
|
41 |
+
jupyter_core==5.7.2
|
42 |
+
langchain==0.1.16
|
43 |
+
langchain-community==0.0.32
|
44 |
+
langchain-core==0.1.42
|
45 |
+
langchain-openai==0.1.3
|
46 |
+
langchain-text-splitters==0.0.1
|
47 |
+
langdetect==1.0.9
|
48 |
+
langsmith==0.1.47
|
49 |
+
markdown-it-py==3.0.0
|
50 |
+
MarkupSafe==2.1.5
|
51 |
+
marshmallow==3.21.1
|
52 |
+
matplotlib-inline==0.1.6
|
53 |
+
mdurl==0.1.2
|
54 |
+
multidict==6.0.5
|
55 |
+
mypy-extensions==1.0.0
|
56 |
+
nest-asyncio==1.6.0
|
57 |
+
nltk==3.8.1
|
58 |
+
numexpr==2.10.0
|
59 |
+
numpy==1.26.4
|
60 |
+
openai==1.17.1
|
61 |
+
openapi-schema-pydantic==1.2.4
|
62 |
+
orjson==3.10.0
|
63 |
+
packaging==23.2
|
64 |
+
pandas==2.2.1
|
65 |
+
parso==0.8.3
|
66 |
+
pexpect==4.9.0
|
67 |
+
pillow==10.3.0
|
68 |
+
platformdirs==4.2.0
|
69 |
+
prompt-toolkit==3.0.43
|
70 |
+
protobuf==4.25.3
|
71 |
+
psutil==5.9.8
|
72 |
+
ptyprocess==0.7.0
|
73 |
+
pure-eval==0.2.2
|
74 |
+
pyarrow==15.0.2
|
75 |
+
pydantic==1.10.15
|
76 |
+
pydeck==0.8.1b0
|
77 |
+
Pygments==2.17.2
|
78 |
+
python-dateutil==2.9.0.post0
|
79 |
+
python-dotenv==1.0.0
|
80 |
+
pytz==2024.1
|
81 |
+
PyYAML==6.0.1
|
82 |
+
pyzmq==25.1.2
|
83 |
+
referencing==0.34.0
|
84 |
+
regex==2023.12.25
|
85 |
+
requests==2.31.0
|
86 |
+
requests-toolbelt==1.0.0
|
87 |
+
rich==13.7.1
|
88 |
+
rpds-py==0.18.0
|
89 |
+
scipy==1.12.0
|
90 |
+
six==1.16.0
|
91 |
+
smmap==5.0.1
|
92 |
+
sniffio==1.3.1
|
93 |
+
soupsieve==2.5
|
94 |
+
SQLAlchemy==2.0.29
|
95 |
+
stack-data==0.6.3
|
96 |
+
streamlit==1.33.0
|
97 |
+
streamlit-js-eval==0.1.7
|
98 |
+
tenacity==8.2.3
|
99 |
+
tiktoken==0.6.0
|
100 |
+
toml==0.10.2
|
101 |
+
toolz==0.12.1
|
102 |
+
tornado==6.4
|
103 |
+
tqdm==4.66.2
|
104 |
+
traitlets==5.14.2
|
105 |
+
typing-inspect==0.9.0
|
106 |
+
typing_extensions==4.11.0
|
107 |
+
tzdata==2024.1
|
108 |
+
urllib3==2.2.1
|
109 |
+
watchdog==4.0.0
|
110 |
+
wcwidth==0.2.13
|
111 |
+
yarl==1.9.4
|