Update app.py
Browse files
app.py
CHANGED
@@ -3,152 +3,142 @@ import requests
|
|
3 |
import os
|
4 |
|
5 |
# Load API keys securely from environment variables
|
6 |
-
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") #
|
7 |
-
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY")
|
8 |
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# Extract relevant skills and experiences from LinkedIn profile
|
21 |
-
bio = data.get("summary", "No bio available")
|
22 |
-
skills = data.get("skills", []) # List of skills from the LinkedIn profile
|
23 |
-
experiences = data.get("experiences", []) # List of experiences from the LinkedIn profile
|
24 |
-
return bio, skills, experiences
|
25 |
-
else:
|
26 |
-
return "Error: Unable to fetch LinkedIn profile", [], []
|
27 |
-
|
28 |
-
# Function to get company information via Proxycurl Company API
|
29 |
-
def get_company_info(company_name):
|
30 |
-
headers = {
|
31 |
-
"Authorization": f"Bearer {proxycurl_api_key}",
|
32 |
-
}
|
33 |
-
url = f"https://nubela.co/proxycurl/api/v2/linkedin/company?company_name={company_name}"
|
34 |
-
|
35 |
-
response = requests.get(url, headers=headers)
|
36 |
-
|
37 |
-
if response.status_code == 200:
|
38 |
-
data = response.json()
|
39 |
-
company_info = data.get("description", "No detailed company info available.")
|
40 |
-
return company_info
|
41 |
-
else:
|
42 |
-
return "Error: Unable to fetch company information."
|
43 |
-
|
44 |
-
# Placeholder for role description; could be enhanced to scrape or fetch real role data
|
45 |
-
def get_role_description(role_name, company_name):
|
46 |
-
return f"The role of {role_name} at {company_name} involves..."
|
47 |
-
|
48 |
-
# Helper function to call Groq Cloud LLM API to generate and correct the email
|
49 |
-
def generate_and_correct_email(bio, company_name, role, company_info, role_description, skills, experiences):
|
50 |
-
url = "https://api.groq.com/openai/v1/chat/completions"
|
51 |
-
headers = {
|
52 |
-
"Authorization": f"Bearer {groq_api_key}",
|
53 |
-
"Content-Type": "application/json",
|
54 |
-
}
|
55 |
-
|
56 |
-
# New, detailed prompt with emphasis on correlating LinkedIn skills and experience to the job role
|
57 |
-
prompt = f"""
|
58 |
-
Write a professional email applying for the {role} position at {company_name}.
|
59 |
-
|
60 |
-
The candidate’s bio is: {bio}.
|
61 |
-
|
62 |
-
The candidate's LinkedIn profile highlights the following skills: {', '.join(skills)}.
|
63 |
-
The candidate has the following experiences relevant to the job: {', '.join([exp['title'] for exp in experiences])}.
|
64 |
-
|
65 |
-
The email should:
|
66 |
-
- Be professional, engaging, and customized to the company's culture and the role’s requirements.
|
67 |
-
- Include relevant company details: {company_info}.
|
68 |
-
- Highlight the candidate’s skills and experiences from LinkedIn, mapping them directly to the job's requirements. The role description is: {role_description}.
|
69 |
-
- Emphasize how the candidate’s background aligns with the company’s values and mission.
|
70 |
-
- Attract the company's attention by focusing on how the candidate's background can bring value to the role and the company's future goals.
|
71 |
-
- Use a tone that is persuasive but not overly promotional.
|
72 |
-
- End with a strong call to action, encouraging the company to schedule an interview to discuss how the candidate can contribute to their success.
|
73 |
-
|
74 |
-
Structure the email as follows:
|
75 |
-
1. **Introduction**: Briefly introduce the candidate and state the role they are applying for.
|
76 |
-
2. **Skills & Experience**: Map the candidate’s skills and experience from LinkedIn to the job's key requirements.
|
77 |
-
3. **Alignment with the Company**: Emphasize how the candidate’s background fits with the company's mission, values, and goals.
|
78 |
-
4. **Call to Action**: Encourage the company to schedule an interview to further discuss the candidate’s fit for the role.
|
79 |
-
|
80 |
-
Ensure that redundant sign-offs like 'Best regards' or 'Sincerely' are not included.
|
81 |
-
"""
|
82 |
-
|
83 |
-
# Construct the data payload for the API request
|
84 |
-
data = {
|
85 |
-
"messages": [
|
86 |
-
{
|
87 |
-
"role": "user",
|
88 |
-
"content": prompt
|
89 |
-
}
|
90 |
-
],
|
91 |
-
"model": "llama3-8b-8192"
|
92 |
-
}
|
93 |
-
|
94 |
-
response = requests.post(url, headers=headers, json=data)
|
95 |
-
|
96 |
-
if response.status_code == 200:
|
97 |
-
return response.json()["choices"][0]["message"]["content"].strip()
|
98 |
-
else:
|
99 |
-
print(f"Error: {response.status_code}, {response.text}")
|
100 |
-
return "Error generating email. Please check your API key or try again later."
|
101 |
|
102 |
-
#
|
103 |
-
def
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
#
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
# Define interface
|
130 |
def gradio_ui():
|
131 |
-
#
|
132 |
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
|
133 |
-
|
134 |
-
company_name_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
|
135 |
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
|
136 |
-
|
137 |
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
|
138 |
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
|
139 |
-
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
|
|
|
140 |
|
141 |
-
#
|
142 |
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
|
143 |
-
|
144 |
-
#
|
|
|
|
|
|
|
|
|
|
|
145 |
demo = gr.Interface(
|
146 |
-
fn=create_email,
|
147 |
-
inputs=[name_input,
|
148 |
outputs=[email_output],
|
149 |
-
title="Email Writing AI Agent",
|
150 |
-
description="Generate a professional email for a job application
|
151 |
-
allow_flagging="never"
|
152 |
)
|
153 |
|
154 |
# Launch the Gradio app
|
|
|
3 |
import os
|
4 |
|
5 |
# Load API keys securely from environment variables
|
6 |
+
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Proxycurl API key
|
7 |
+
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") # Groq Cloud API key
|
8 |
|
9 |
+
class EmailAgent:
|
10 |
+
def __init__(self, linkedin_url, company_name, role, word_limit):
|
11 |
+
self.linkedin_url = linkedin_url
|
12 |
+
self.company_name = company_name
|
13 |
+
self.role = role
|
14 |
+
self.word_limit = word_limit
|
15 |
+
self.bio = None
|
16 |
+
self.skills = []
|
17 |
+
self.experiences = []
|
18 |
+
self.company_info = None
|
19 |
+
self.role_description = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Reason: Decide what information is needed
|
22 |
+
def reason_about_data(self):
|
23 |
+
print("Reasoning: I need LinkedIn data, company info, and role description.")
|
24 |
+
if not self.linkedin_url:
|
25 |
+
print("Missing LinkedIn URL. Request from the user.")
|
26 |
+
if not self.company_name:
|
27 |
+
print("Missing company name. Request from the user.")
|
28 |
+
|
29 |
+
# Action: Fetch LinkedIn data via Proxycurl
|
30 |
+
def fetch_linkedin_data(self):
|
31 |
+
print("Action: Fetching LinkedIn data from Proxycurl.")
|
32 |
+
headers = {
|
33 |
+
"Authorization": f"Bearer {proxycurl_api_key}",
|
34 |
+
}
|
35 |
+
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
|
36 |
+
response = requests.get(url, headers=headers)
|
37 |
+
if response.status_code == 200:
|
38 |
+
data = response.json()
|
39 |
+
self.bio = data.get("summary", "No bio available")
|
40 |
+
self.skills = data.get("skills", [])
|
41 |
+
self.experiences = data.get("experiences", [])
|
42 |
+
else:
|
43 |
+
print("Error: Unable to fetch LinkedIn profile.")
|
44 |
+
|
45 |
+
# Action: Fetch company information via Proxycurl
|
46 |
+
def fetch_company_info(self):
|
47 |
+
print(f"Action: Fetching company info for {self.company_name}.")
|
48 |
+
headers = {
|
49 |
+
"Authorization": f"Bearer {proxycurl_api_key}",
|
50 |
+
}
|
51 |
+
url = f"https://nubela.co/proxycurl/api/v2/linkedin/company?company_name={self.company_name}"
|
52 |
+
response = requests.get(url, headers=headers)
|
53 |
+
if response.status_code == 200:
|
54 |
+
data = response.json()
|
55 |
+
self.company_info = data.get("description", "No detailed company info available.")
|
56 |
+
else:
|
57 |
+
print(f"Error: Unable to fetch company info for {self.company_name}.")
|
58 |
+
|
59 |
+
# Action: Fetch role description
|
60 |
+
def fetch_role_description(self):
|
61 |
+
print(f"Action: Fetching role description for {self.role}.")
|
62 |
+
self.role_description = f"The role of {self.role} at {self.company_name} involves..."
|
63 |
|
64 |
+
# Reflection: Check if the data is sufficient to generate an email
|
65 |
+
def reflect_on_data(self):
|
66 |
+
print("Reflection: Do I have enough data to generate the email?")
|
67 |
+
if not self.bio or not self.skills or not self.company_info:
|
68 |
+
print("Missing some critical information. Need to gather more data.")
|
69 |
+
return False
|
70 |
+
return True
|
71 |
+
|
72 |
+
# Action: Generate the email using Groq Cloud LLM
|
73 |
+
def generate_email(self):
|
74 |
+
print("Action: Generating the email with the gathered information.")
|
75 |
+
prompt = f"""
|
76 |
+
Write a professional email applying for the {self.role} position at {self.company_name}.
|
77 |
+
The candidate’s bio is: {self.bio}.
|
78 |
+
The candidate's LinkedIn profile highlights the following skills: {', '.join(self.skills)}.
|
79 |
+
The candidate has the following experiences relevant to the job: {', '.join([exp['title'] for exp in self.experiences])}.
|
80 |
+
The email should be professional, concise, and tailored to the company's culture.
|
81 |
+
Use relevant company details: {self.company_info}.
|
82 |
+
Highlight the candidate’s skills and experiences from LinkedIn, and map them to the job's requirements: {self.role_description}.
|
83 |
+
The email should not exceed {self.word_limit} words.
|
84 |
+
"""
|
85 |
+
|
86 |
+
url = "https://api.groq.com/openai/v1/chat/completions"
|
87 |
+
headers = {
|
88 |
+
"Authorization": f"Bearer {groq_api_key}",
|
89 |
+
"Content-Type": "application/json",
|
90 |
+
}
|
91 |
+
|
92 |
+
data = {
|
93 |
+
"messages": [{"role": "user", "content": prompt}],
|
94 |
+
"model": "llama3-8b-8192"
|
95 |
+
}
|
96 |
+
|
97 |
+
response = requests.post(url, headers=headers, json=data)
|
98 |
+
if response.status_code == 200:
|
99 |
+
return response.json()["choices"][0]["message"]["content"].strip()
|
100 |
+
else:
|
101 |
+
print(f"Error: {response.status_code}, {response.text}")
|
102 |
+
return "Error generating email. Please check your API key or try again later."
|
103 |
|
104 |
+
# Main loop following ReAct pattern
|
105 |
+
def run(self):
|
106 |
+
self.reason_about_data() # Reason
|
107 |
+
self.fetch_linkedin_data() # Action
|
108 |
+
self.fetch_company_info() # Action
|
109 |
+
self.fetch_role_description() # Action
|
110 |
+
if self.reflect_on_data(): # Reflection
|
111 |
+
return self.generate_email() # Final Action
|
112 |
+
else:
|
113 |
+
return "Error: Not enough data to generate the email."
|
114 |
|
115 |
+
# Define the Gradio interface and the main app logic
|
116 |
def gradio_ui():
|
117 |
+
# Input fields
|
118 |
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
|
119 |
+
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
|
|
|
120 |
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
|
|
|
121 |
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
|
122 |
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
|
123 |
+
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
|
124 |
+
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150) # New slider for word limit
|
125 |
|
126 |
+
# Output field
|
127 |
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
|
128 |
+
|
129 |
+
# Function to create and run the email agent
|
130 |
+
def create_email(name, company_name, role, email, phone, linkedin_profile_url, word_limit):
|
131 |
+
agent = EmailAgent(linkedin_profile_url, company_name, role, word_limit)
|
132 |
+
return agent.run()
|
133 |
+
|
134 |
+
# Gradio interface
|
135 |
demo = gr.Interface(
|
136 |
+
fn=create_email,
|
137 |
+
inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
|
138 |
outputs=[email_output],
|
139 |
+
title="Email Writing AI Agent with ReAct",
|
140 |
+
description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
|
141 |
+
allow_flagging="never"
|
142 |
)
|
143 |
|
144 |
# Launch the Gradio app
|