Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import requests
|
|
|
|
| 3 |
import os
|
| 4 |
-
from bs4 import BeautifulSoup # For scraping company and role info
|
| 5 |
|
| 6 |
# Load API keys securely from environment variables
|
| 7 |
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Proxycurl API key
|
| 8 |
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") # Groq Cloud API key
|
|
|
|
| 9 |
|
| 10 |
class EmailAgent:
|
| 11 |
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
|
|
@@ -23,7 +23,7 @@ class EmailAgent:
|
|
| 23 |
self.company_info = None
|
| 24 |
self.role_description = None
|
| 25 |
|
| 26 |
-
# Reason: Decide what information is needed
|
| 27 |
def reason_about_data(self):
|
| 28 |
print("Reasoning: Deciding what data we need...")
|
| 29 |
if not self.linkedin_url:
|
|
@@ -56,55 +56,29 @@ class EmailAgent:
|
|
| 56 |
self.skills = ["Adaptable", "Hardworking"]
|
| 57 |
self.experiences = ["Worked across various industries"]
|
| 58 |
|
| 59 |
-
# Action: Fetch company information via
|
| 60 |
-
def
|
| 61 |
if not self.company_name:
|
| 62 |
print("Action: No company name provided, using default company info.")
|
| 63 |
self.company_info = "A leading company in its field."
|
| 64 |
else:
|
| 65 |
-
print(f"Action: Fetching company info for {self.company_name}.")
|
| 66 |
-
headers = {"Authorization": f"Bearer {
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
if response.status_code == 200:
|
| 70 |
-
|
| 71 |
-
self.company_info =
|
|
|
|
| 72 |
else:
|
| 73 |
-
print(f"Error: Unable to fetch company info
|
| 74 |
self.company_info = "A leading company in its field."
|
| 75 |
|
| 76 |
-
# Action: Scrape the company's website for role-specific information or use defaults
|
| 77 |
-
def scrape_role_from_website(self):
|
| 78 |
-
print(f"Action: Scraping role description from the company's website for {self.role}.")
|
| 79 |
-
if not self.company_name:
|
| 80 |
-
print("Error: No company name or URL provided for scraping.")
|
| 81 |
-
return False
|
| 82 |
-
|
| 83 |
-
# Try scraping the website for role descriptions
|
| 84 |
-
try:
|
| 85 |
-
response = requests.get(f"https://{self.company_name}.com/careers")
|
| 86 |
-
if response.status_code == 200:
|
| 87 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
| 88 |
-
role_descriptions = soup.find_all(string=lambda text: self.role.lower() in text.lower())
|
| 89 |
-
if role_descriptions:
|
| 90 |
-
self.role_description = role_descriptions[0]
|
| 91 |
-
print(f"Found role description: {self.role_description}")
|
| 92 |
-
return True
|
| 93 |
-
else:
|
| 94 |
-
print(f"No specific role description found on the website for {self.role}.")
|
| 95 |
-
return False
|
| 96 |
-
else:
|
| 97 |
-
print(f"Error: Unable to reach company's website at {self.company_name}.com.")
|
| 98 |
-
return False
|
| 99 |
-
except Exception as e:
|
| 100 |
-
print(f"Error during scraping: {e}")
|
| 101 |
-
return False
|
| 102 |
-
|
| 103 |
-
# Action: Use default logic for role description if no role is available
|
| 104 |
-
def use_default_role_description(self):
|
| 105 |
-
print(f"Action: Using default logic for the role of {self.role}.")
|
| 106 |
-
self.role_description = f"The role of {self.role} at {self.company_name} involves leadership and management."
|
| 107 |
-
|
| 108 |
# Reflection: Check if we have enough data to generate the email
|
| 109 |
def reflect_on_data(self):
|
| 110 |
print("Reflection: Do we have enough data?")
|
|
@@ -116,7 +90,7 @@ class EmailAgent:
|
|
| 116 |
def generate_email(self):
|
| 117 |
print("Action: Generating the email with the gathered information.")
|
| 118 |
|
| 119 |
-
#
|
| 120 |
prompt = f"""
|
| 121 |
Write a professional email applying for the {self.role} position at {self.company_name}.
|
| 122 |
|
|
@@ -161,10 +135,7 @@ class EmailAgent:
|
|
| 161 |
def run(self):
|
| 162 |
self.reason_about_data() # Reasoning step
|
| 163 |
self.fetch_linkedin_data() # Fetch LinkedIn data
|
| 164 |
-
self.
|
| 165 |
-
# Scrape the company's website for role-specific information or use defaults
|
| 166 |
-
if not self.scrape_role_from_website():
|
| 167 |
-
self.use_default_role_description()
|
| 168 |
# Reflect on whether the data is sufficient
|
| 169 |
if self.reflect_on_data():
|
| 170 |
return self.generate_email() # Final action: generate email
|
|
|
|
|
|
|
| 1 |
import requests
|
| 2 |
+
import gradio as gr
|
| 3 |
import os
|
|
|
|
| 4 |
|
| 5 |
# Load API keys securely from environment variables
|
| 6 |
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Proxycurl API key
|
| 7 |
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") # Groq Cloud API key
|
| 8 |
+
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY") # Firecrawl API key
|
| 9 |
|
| 10 |
class EmailAgent:
|
| 11 |
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
|
|
|
|
| 23 |
self.company_info = None
|
| 24 |
self.role_description = None
|
| 25 |
|
| 26 |
+
# Reason: Decide what information is needed
|
| 27 |
def reason_about_data(self):
|
| 28 |
print("Reasoning: Deciding what data we need...")
|
| 29 |
if not self.linkedin_url:
|
|
|
|
| 56 |
self.skills = ["Adaptable", "Hardworking"]
|
| 57 |
self.experiences = ["Worked across various industries"]
|
| 58 |
|
| 59 |
+
# Action: Fetch company information via Firecrawl API
|
| 60 |
+
def fetch_company_info_with_firecrawl(self):
|
| 61 |
if not self.company_name:
|
| 62 |
print("Action: No company name provided, using default company info.")
|
| 63 |
self.company_info = "A leading company in its field."
|
| 64 |
else:
|
| 65 |
+
print(f"Action: Fetching company info for {self.company_name} using Firecrawl.")
|
| 66 |
+
headers = {"Authorization": f"Bearer {firecrawl_api_key}"}
|
| 67 |
+
firecrawl_url = "https://api.firecrawl.dev/v1/scrape"
|
| 68 |
+
data = {
|
| 69 |
+
"url": f"https://{self.company_name}.com",
|
| 70 |
+
"patterns": ["description", "about", "careers", "company overview"]
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
response = requests.post(firecrawl_url, json=data, headers=headers)
|
| 74 |
if response.status_code == 200:
|
| 75 |
+
firecrawl_data = response.json()
|
| 76 |
+
self.company_info = firecrawl_data.get("description", "No detailed company info available.")
|
| 77 |
+
print(f"Company info fetched: {self.company_info}")
|
| 78 |
else:
|
| 79 |
+
print(f"Error: Unable to fetch company info via Firecrawl. Using default info.")
|
| 80 |
self.company_info = "A leading company in its field."
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
# Reflection: Check if we have enough data to generate the email
|
| 83 |
def reflect_on_data(self):
|
| 84 |
print("Reflection: Do we have enough data?")
|
|
|
|
| 90 |
def generate_email(self):
|
| 91 |
print("Action: Generating the email with the gathered information.")
|
| 92 |
|
| 93 |
+
# Dynamic LLM prompt
|
| 94 |
prompt = f"""
|
| 95 |
Write a professional email applying for the {self.role} position at {self.company_name}.
|
| 96 |
|
|
|
|
| 135 |
def run(self):
|
| 136 |
self.reason_about_data() # Reasoning step
|
| 137 |
self.fetch_linkedin_data() # Fetch LinkedIn data
|
| 138 |
+
self.fetch_company_info_with_firecrawl() # Fetch company data using Firecrawl
|
|
|
|
|
|
|
|
|
|
| 139 |
# Reflect on whether the data is sufficient
|
| 140 |
if self.reflect_on_data():
|
| 141 |
return self.generate_email() # Final action: generate email
|