Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import language_tool_python
|
| 4 |
+
from bs4 import BeautifulSoup
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# Load Groq Cloud API key from Hugging Face secrets
|
| 8 |
+
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY")
|
| 9 |
+
|
| 10 |
+
# Scraping function to fetch user public data (for demo purposes, we will simulate this)
|
| 11 |
+
def fetch_public_data(name, dob, city):
|
| 12 |
+
# Here, you could implement logic to fetch public data from sources like LinkedIn, GitHub, etc.
|
| 13 |
+
# For simplicity, we will return dummy data to simulate a successful fetch.
|
| 14 |
+
# You can implement web scraping or API integration to fetch real data.
|
| 15 |
+
# Example scraping code can go here (or via LinkedIn API, etc.)
|
| 16 |
+
|
| 17 |
+
bio = f"{name} is a software engineer from {city} with over 10 years of experience. Known for work in AI, cloud computing, and leadership in various engineering teams."
|
| 18 |
+
return bio
|
| 19 |
+
|
| 20 |
+
# Helper function to call Groq Cloud LLM API to generate email
|
| 21 |
+
def generate_email_from_groq(bio, company_name, role):
|
| 22 |
+
url = "https://api.groq.cloud/generate" # Adjust based on Groq's API documentation
|
| 23 |
+
headers = {
|
| 24 |
+
"Authorization": f"Bearer {groq_api_key}",
|
| 25 |
+
"Content-Type": "application/json",
|
| 26 |
+
}
|
| 27 |
+
prompt = f"Write a professional email applying for a {role} position at {company_name}. Use this bio: {bio}. The email should include an introduction, relevant experience, skills, and a closing."
|
| 28 |
+
data = {
|
| 29 |
+
"model": "groq-model", # Adjust the model name based on Groq documentation
|
| 30 |
+
"prompt": prompt,
|
| 31 |
+
"max_tokens": 300
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
response = requests.post(url, headers=headers, json=data)
|
| 35 |
+
|
| 36 |
+
if response.status_code == 200:
|
| 37 |
+
return response.json().get("choices")[0].get("text").strip()
|
| 38 |
+
else:
|
| 39 |
+
return "Error generating email. Please check your API key or try again later."
|
| 40 |
+
|
| 41 |
+
# Grammar and Tone Checker Function
|
| 42 |
+
def check_grammar(email_text):
|
| 43 |
+
tool = language_tool_python.LanguageTool('en-US')
|
| 44 |
+
matches = tool.check(email_text)
|
| 45 |
+
corrected_text = language_tool_python
|