Update app.py
Browse files
app.py
CHANGED
@@ -69,10 +69,17 @@ class AutonomousEmailAgent:
|
|
69 |
if response.status_code == 200:
|
70 |
try:
|
71 |
result = response.json() # Parse the response as JSON
|
|
|
|
|
72 |
# Check if 'choices' and the content are correctly structured in the response
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
except json.JSONDecodeError:
|
77 |
print("Error: Response from Groq Cloud LLM is not valid JSON.")
|
78 |
return "Error: Response is not in JSON format."
|
@@ -82,6 +89,7 @@ class AutonomousEmailAgent:
|
|
82 |
|
83 |
# Function to act on the LLM's structured instructions
|
84 |
def act_on_llm_instructions(self, reasoning_output):
|
|
|
85 |
instruction = reasoning_output.lower().strip()
|
86 |
|
87 |
if "scrape" in instruction:
|
@@ -105,103 +113,15 @@ class AutonomousEmailAgent:
|
|
105 |
print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
|
106 |
return self.generate_email()
|
107 |
|
108 |
-
#
|
109 |
-
def fetch_company_url(self):
|
110 |
-
serp_api_key = os.getenv("SERP_API_KEY")
|
111 |
-
print(f"Fetching company URL for {self.company_name} using SERP API...")
|
112 |
-
serp_url = f"https://serpapi.com/search.json?q={self.company_name}&api_key={serp_api_key}&num=1"
|
113 |
-
response = requests.get(serp_url)
|
114 |
-
|
115 |
-
if response.status_code == 200:
|
116 |
-
serp_data = response.json()
|
117 |
-
if 'organic_results' in serp_data and len(serp_data['organic_results']) > 0:
|
118 |
-
self.company_url = serp_data['organic_results'][0]['link']
|
119 |
-
print(f"Found company URL: {self.company_url}")
|
120 |
-
else:
|
121 |
-
print("No URL found for the company via SERP API.")
|
122 |
-
self.company_url = None
|
123 |
-
else:
|
124 |
-
print(f"Error fetching company URL: {response.status_code}")
|
125 |
-
|
126 |
-
# Fetch LinkedIn data via Proxycurl
|
127 |
-
def fetch_linkedin_data(self):
|
128 |
-
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY")
|
129 |
-
if not self.linkedin_url:
|
130 |
-
print("Action: No LinkedIn URL provided, using default bio.")
|
131 |
-
self.bio = "A professional with diverse experience."
|
132 |
-
self.skills = ["Adaptable", "Hardworking"]
|
133 |
-
self.experiences = ["Worked across various industries"]
|
134 |
-
else:
|
135 |
-
print("Action: Fetching LinkedIn data via Proxycurl.")
|
136 |
-
headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
|
137 |
-
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
|
138 |
-
response = requests.get(url, headers=headers)
|
139 |
-
if response.status_code == 200:
|
140 |
-
data = response.json()
|
141 |
-
self.bio = data.get("summary", "No bio available")
|
142 |
-
self.skills = data.get("skills", [])
|
143 |
-
self.experiences = data.get("experiences", [])
|
144 |
-
else:
|
145 |
-
print("Error: Unable to fetch LinkedIn profile. Using default bio.")
|
146 |
-
self.bio = "A professional with diverse experience."
|
147 |
-
self.skills = ["Adaptable", "Hardworking"]
|
148 |
-
self.experiences = ["Worked across various industries"]
|
149 |
-
|
150 |
-
# Fetch company information via Firecrawl API using company URL
|
151 |
-
def fetch_company_info_with_firecrawl(self, company_url):
|
152 |
-
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
|
153 |
-
print(f"Fetching company info for {company_url} using Firecrawl.")
|
154 |
-
headers = {"Authorization": f"Bearer {firecrawl_api_key}"}
|
155 |
-
firecrawl_url = "https://api.firecrawl.dev/v1/scrape"
|
156 |
-
data = {"url": company_url, "patterns": ["description", "about", "careers", "company overview"]}
|
157 |
-
|
158 |
-
response = requests.post(firecrawl_url, json=data, headers=headers)
|
159 |
-
if response.status_code == 200:
|
160 |
-
firecrawl_data = response.json()
|
161 |
-
self.company_info = firecrawl_data.get("description", "No detailed company info available.")
|
162 |
-
print(f"Company info fetched: {self.company_info}")
|
163 |
-
else:
|
164 |
-
print(f"Error: Unable to fetch company info via Firecrawl. Status code: {response.status_code}")
|
165 |
-
self.company_info = "A leading company in its field."
|
166 |
-
|
167 |
-
# Final Action: Generate the email using Groq Cloud LLM
|
168 |
-
def generate_email(self):
|
169 |
-
print("Action: Generating the email using Groq Cloud LLM with the gathered information.")
|
170 |
-
|
171 |
-
prompt = f"""
|
172 |
-
Write a professional job application email applying for the {self.role} position at {self.company_name}.
|
173 |
-
|
174 |
-
The email should follow the "Start with Why" approach:
|
175 |
-
1. **Why**: Explain why the candidate is passionate about this role and company.
|
176 |
-
2. **How**: Highlight the candidate’s skills and experiences.
|
177 |
-
3. **What**: Provide examples of past achievements.
|
178 |
-
4. **Call to Action**: Request a meeting or discussion.
|
179 |
-
|
180 |
-
- LinkedIn bio: {self.bio}
|
181 |
-
- Skills: {', '.join(self.skills)}
|
182 |
-
- Experience: {', '.join([exp['title'] for exp in self.experiences])}
|
183 |
-
- Company information: {self.company_info}
|
184 |
-
|
185 |
-
Signature:
|
186 |
-
Best regards,
|
187 |
-
{self.user_name}
|
188 |
-
Email: {self.email}
|
189 |
-
Phone: {self.phone}
|
190 |
-
LinkedIn: {self.linkedin}
|
191 |
-
|
192 |
-
Limit the email to {self.word_limit} words.
|
193 |
-
"""
|
194 |
-
|
195 |
-
return self.send_request_to_llm(prompt)
|
196 |
|
197 |
# Main loop following ReAct pattern
|
198 |
def run(self):
|
199 |
self.fetch_linkedin_data()
|
200 |
return self.autonomous_reasoning()
|
201 |
|
202 |
-
# Gradio UI setup remains the same
|
203 |
def gradio_ui():
|
204 |
-
# Input fields
|
205 |
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
|
206 |
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
|
207 |
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
|
|
|
69 |
if response.status_code == 200:
|
70 |
try:
|
71 |
result = response.json() # Parse the response as JSON
|
72 |
+
print(f"LLM Response: {json.dumps(result, indent=2)}") # Print the full response for debugging
|
73 |
+
|
74 |
# Check if 'choices' and the content are correctly structured in the response
|
75 |
+
choices = result.get("choices", [])
|
76 |
+
if choices and "message" in choices[0]:
|
77 |
+
content = choices[0]["message"]["content"]
|
78 |
+
print(f"Content: {content}")
|
79 |
+
return self.act_on_llm_instructions(content)
|
80 |
+
else:
|
81 |
+
print("Error: Unrecognized format in LLM response.")
|
82 |
+
return "Error: Unrecognized response format."
|
83 |
except json.JSONDecodeError:
|
84 |
print("Error: Response from Groq Cloud LLM is not valid JSON.")
|
85 |
return "Error: Response is not in JSON format."
|
|
|
89 |
|
90 |
# Function to act on the LLM's structured instructions
|
91 |
def act_on_llm_instructions(self, reasoning_output):
|
92 |
+
print(f"LLM Instruction: {reasoning_output}") # Print the LLM's instruction for debugging
|
93 |
instruction = reasoning_output.lower().strip()
|
94 |
|
95 |
if "scrape" in instruction:
|
|
|
113 |
print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
|
114 |
return self.generate_email()
|
115 |
|
116 |
+
# Other methods (fetch_linkedin_data, fetch_company_url, fetch_company_info_with_firecrawl, generate_email) remain unchanged...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
# Main loop following ReAct pattern
|
119 |
def run(self):
|
120 |
self.fetch_linkedin_data()
|
121 |
return self.autonomous_reasoning()
|
122 |
|
123 |
+
# Gradio UI setup remains the same as before
|
124 |
def gradio_ui():
|
|
|
125 |
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
|
126 |
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
|
127 |
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
|