AdityaAdaki commited on
Commit
00fd610
·
1 Parent(s): d60910c
app.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import tensorflow_hub as hub
4
+ import numpy as np
5
+ from PIL import Image
6
+ import requests
7
+ from googletrans import Translator
8
+ import asyncio
9
+ import nest_asyncio
10
+ import os
11
+
12
+ # Apply the nest_asyncio patch to allow nested event loops in Streamlit
13
+ nest_asyncio.apply()
14
+
15
+ # Set page configuration with a custom title, icon, and wide layout
16
+ st.set_page_config(
17
+ page_title="Plant Disease Classifier 🌱",
18
+ page_icon="🌱",
19
+ layout="wide",
20
+ initial_sidebar_state="expanded",
21
+ )
22
+
23
+ # Custom CSS for styling
24
+ custom_css = """
25
+ <style>
26
+ body {
27
+ background-color: #f8f9fa;
28
+ }
29
+ h1, h2, h3, h4 {
30
+ color: #2c3e50;
31
+ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
32
+ }
33
+ .stButton>button {
34
+ background-color: #27ae60;
35
+ color: white;
36
+ border: none;
37
+ padding: 0.5em 1em;
38
+ border-radius: 5px;
39
+ font-size: 16px;
40
+ }
41
+ .sidebar .sidebar-content {
42
+ background-image: linear-gradient(#27ae60, #2ecc71);
43
+ color: white;
44
+ }
45
+ </style>
46
+ """
47
+ st.markdown(custom_css, unsafe_allow_html=True)
48
+
49
+ # Dictionary mapping diseases to recommended pesticides (fallback recommendations)
50
+ pesticide_recommendations = {
51
+ 'Bacterial Blight': 'Copper-based fungicides, Streptomycin',
52
+ 'Red Rot': 'Fungicides containing Mancozeb or Copper',
53
+ 'Blight': 'Fungicides containing Chlorothalonil',
54
+ 'Common_Rust': 'Fungicides containing Azoxystrobin or Propiconazole',
55
+ 'Gray_Leaf_Spot,Healthy': 'Fungicides containing Azoxystrobin or Propiconazole',
56
+ 'Bacterial blight': 'Copper-based fungicides, Streptomycin',
57
+ 'curl_virus': 'Insecticides such as Imidacloprid or Pyrethroids',
58
+ 'fussarium_wilt': 'Soil fumigants, Fungicides containing Thiophanate-methyl',
59
+ 'Bacterial_blight': 'Copper-based fungicides, Streptomycin',
60
+ 'Blast': 'Fungicides containing Tricyclazole or Propiconazole',
61
+ 'Brownspot': 'Fungicides containing Azoxystrobin or Propiconazole',
62
+ 'Tungro': 'Insecticides such as Neonicotinoids or Pyrethroids',
63
+ 'septoria': 'Fungicides containing Azoxystrobin or Propiconazole',
64
+ 'strip_rust': 'Fungicides containing Azoxystrobin or Propiconazole'
65
+ }
66
+
67
+
68
+ def recommend_pesticide(predicted_class):
69
+ if predicted_class == 'Healthy':
70
+ return 'No need for any pesticide, plant is healthy'
71
+ return pesticide_recommendations.get(predicted_class, "No recommendation available")
72
+
73
+
74
+ @st.cache_resource(show_spinner=False)
75
+ def load_model_with_hub(model_path):
76
+ custom_objects = {"KerasLayer": hub.KerasLayer}
77
+ return tf.keras.models.load_model(model_path, custom_objects=custom_objects)
78
+
79
+
80
+ # Load models (ensure your model paths are correct)
81
+ models = {
82
+ 'sugarcane': load_model_with_hub("models/sugercane_model.h5"),
83
+ 'maize': load_model_with_hub("models/maize_model.h5"),
84
+ 'cotton': load_model_with_hub("models/cotton_model.h5"),
85
+ 'rice': load_model_with_hub("models/rice.h5"),
86
+ 'wheat': load_model_with_hub("models/wheat_model.h5"),
87
+ }
88
+
89
+ # Class names for each model
90
+ class_names = {
91
+ 'sugarcane': ['Bacterial Blight', 'Healthy', 'Red Rot'],
92
+ 'maize': ['Blight', 'Common_Rust', 'Gray_Leaf_Spot,Healthy'],
93
+ 'cotton': ['Bacterial blight', 'curl_virus', 'fussarium_wilt', 'Healthy'],
94
+ 'rice': ['Bacterial_blight', 'Blast', 'Brownspot', 'Tungro'],
95
+ 'wheat': ['Healthy', 'septoria', 'strip_rust'],
96
+ }
97
+
98
+
99
+ def preprocess_image(image_file):
100
+ """Preprocess the uploaded image: open, convert to RGB, resize, normalize, and add batch dimension."""
101
+ try:
102
+ image = Image.open(image_file).convert("RGB")
103
+ image = image.resize((224, 224))
104
+ img_array = np.array(image).astype("float32") / 255.0
105
+ return np.expand_dims(img_array, axis=0)
106
+ except Exception as e:
107
+ st.error("Error processing image. Please upload a valid image file.")
108
+ return None
109
+
110
+
111
+ def classify_image(model_name, image_file):
112
+ input_image = preprocess_image(image_file)
113
+ if input_image is None:
114
+ return None, None
115
+ predictions = models[model_name].predict(input_image)
116
+ predicted_index = np.argmax(predictions)
117
+ predicted_class = class_names[model_name][predicted_index]
118
+ recommended_pesticide = recommend_pesticide(predicted_class)
119
+ return predicted_class, recommended_pesticide
120
+
121
+
122
+ def get_plant_info(disease, plant_type="Unknown"):
123
+ """
124
+ Retrieve detailed plant disease information from LM Studio using a fixed prompt.
125
+ """
126
+ prompt = f"""
127
+ Disease Name: {disease}
128
+ Plant Type: {plant_type}
129
+
130
+ Explain this disease in a very simple and easy-to-understand way, as if you are talking to a farmer with no scientific background. Use simple words and avoid technical terms.
131
+
132
+ Include the following details:
133
+
134
+ - Symptoms: What signs will the farmer see on the plant? How will the leaves, stem, or fruit look?
135
+ - Causes: Why does this disease happen?
136
+ - Severity: How serious is this disease? Does it spread quickly? How much crop damage can it cause?
137
+ - How It Spreads: How does this disease grow? What will happen if the farmer does nothing?
138
+ - Treatment & Prevention: What pesticides or sprays should the farmer use and what steps can be taken to prevent the disease?
139
+ """
140
+ try:
141
+ response = requests.post(LM_STUDIO_API_URL, json={"messages": [{"role": "user", "content": prompt}]})
142
+ response.raise_for_status()
143
+ data = response.json()
144
+ detailed_info = data.get("choices", [{}])[0].get("message", {}).get("content", "")
145
+ return {"detailed_info": detailed_info}
146
+ except Exception as e:
147
+ st.error("Error retrieving detailed plant info.")
148
+ return {"detailed_info": ""}
149
+
150
+
151
+ def get_web_pesticide_info(disease, plant_type="Unknown"):
152
+ """
153
+ Query Google Custom Search for updated pesticide recommendations.
154
+ """
155
+ query = f"site:agrowon.esakal.com {disease} in {plant_type}"
156
+ url = "https://www.googleapis.com/customsearch/v1"
157
+ params = {
158
+ "key": GOOGLE_API_KEY,
159
+ "cx": GOOGLE_CX,
160
+ "q": query,
161
+ "num": 3
162
+ }
163
+ try:
164
+ response = requests.get(url, params=params)
165
+ response.raise_for_status()
166
+ data = response.json()
167
+ if "items" in data and len(data["items"]) > 0:
168
+ item = data["items"][0]
169
+ title = item.get("title", "No title available")
170
+ link = item.get("link", "#")
171
+ snippet = item.get("snippet", "No snippet available")
172
+ return {"title": title, "link": link, "snippet": snippet, "summary": snippet}
173
+ except Exception as e:
174
+ st.error("Error retrieving web pesticide info.")
175
+ return None
176
+
177
+
178
+ def get_more_web_info(query):
179
+ """
180
+ Query Google Custom Search for more articles or information.
181
+ """
182
+ url = "https://www.googleapis.com/customsearch/v1"
183
+ params = {
184
+ "key": GOOGLE_API_KEY,
185
+ "cx": GOOGLE_CX,
186
+ "q": query,
187
+ "num": 3
188
+ }
189
+ try:
190
+ response = requests.get(url, params=params)
191
+ response.raise_for_status()
192
+ data = response.json()
193
+ results = []
194
+ if "items" in data:
195
+ for item in data["items"]:
196
+ title = item.get("title", "No title available")
197
+ link = item.get("link", "#")
198
+ snippet = item.get("snippet", "No snippet available")
199
+ results.append({"title": title, "link": link, "snippet": snippet})
200
+ return results
201
+ except Exception as e:
202
+ st.error("Error retrieving additional articles.")
203
+ return []
204
+
205
+
206
+ def get_commercial_product_info(recommendation):
207
+ """
208
+ Query Google Custom Search for commercial product details from IndiaMART and Krishisevakendra.
209
+ """
210
+ indiamart_query = f"site:indiamart.com pesticide '{recommendation}'"
211
+ krishi_query = f"site:krishisevakendra.in/products pesticide '{recommendation}'"
212
+ indiamart_results = get_more_web_info(indiamart_query)
213
+ krishi_results = get_more_web_info(krishi_query)
214
+ return indiamart_results + krishi_results
215
+
216
+
217
+ # LM Studio API endpoint for detailed info (do not change key prompt values)
218
+ LM_STUDIO_API_URL = os.getenv("LM_STUDIO_API_URL", "http://192.168.56.1:1234/v1/chat/completions")
219
+
220
+ # Google Custom Search API key and CX
221
+ GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
222
+ GOOGLE_CX = os.getenv("GOOGLE_CX")
223
+
224
+ # Initialize session state for language if not already done
225
+ if "language" not in st.session_state:
226
+ st.session_state.language = "English"
227
+
228
+ # Initialize Google Translator
229
+ translator = Translator()
230
+
231
+
232
+ # --- Async translation functions ---
233
+ async def async_translate_text(text):
234
+ translated = await translator.translate(text, src='en', dest='mr')
235
+ return translated.text
236
+
237
+
238
+ def translate_text(text):
239
+ """
240
+ Translate text to Marathi if selected, otherwise return original text.
241
+ """
242
+ if st.session_state.language == "Marathi":
243
+ try:
244
+ return asyncio.get_event_loop().run_until_complete(async_translate_text(text))
245
+ except Exception as e:
246
+ st.error("Translation error.")
247
+ return text
248
+ return text
249
+
250
+
251
+ def main():
252
+ # Sidebar with settings and file uploader
253
+ st.sidebar.title("Settings")
254
+ st.sidebar.info("Choose language and plant type, then upload an image to classify the disease.")
255
+ language_option = st.sidebar.radio("Language", options=["English", "Marathi"], index=0)
256
+ st.session_state.language = language_option
257
+ plant_type = st.sidebar.selectbox("Select Plant Type", options=['sugarcane', 'maize', 'cotton', 'rice', 'wheat'])
258
+ uploaded_file = st.sidebar.file_uploader("Upload a plant image...", type=["jpg", "jpeg", "png"])
259
+
260
+ # Header with a banner image and introductory text
261
+ col1, col2 = st.columns([1, 2])
262
+ with col1:
263
+ st.image("https://via.placeholder.com/150x150.png?text=Plant", caption=translate_text("Plant Health"),
264
+ use_container_width=True)
265
+ with col2:
266
+ st.title(translate_text("Krushi Mitra "))
267
+ st.write(translate_text(
268
+ "Plant Disease Classification and Pesticide Recommendation.\n\n"
269
+ "Upload an image of your plant, select the plant type from the sidebar, and click on Classify to get the diagnosis and recommendations."))
270
+
271
+ if uploaded_file is not None:
272
+ # Display the uploaded image in an appealing container
273
+ st.markdown("---")
274
+ st.subheader(translate_text("Uploaded Image"))
275
+ st.image(uploaded_file, use_container_width=True)
276
+
277
+ if st.button(translate_text("Classify")):
278
+ with st.spinner(translate_text("Classifying...")):
279
+ predicted_class, pesticide = classify_image(plant_type, uploaded_file)
280
+ if predicted_class:
281
+ st.success(translate_text("Classification Complete!"))
282
+ st.markdown(
283
+ f"### {translate_text('Predicted Class')} ({plant_type.capitalize()}): {translate_text(predicted_class)}")
284
+ st.markdown(f"### {translate_text('Recommended Pesticide')}: {translate_text(pesticide)}")
285
+
286
+ # Display results in tabs for a cleaner layout
287
+ tabs = st.tabs([translate_text("Detailed Info"), translate_text("Commercial Products"),
288
+ translate_text("More Articles")])
289
+
290
+ # Detailed Info Tab
291
+ with tabs[0]:
292
+ with st.spinner(translate_text("Retrieving detailed plant information...")):
293
+ info = get_plant_info(predicted_class, plant_type)
294
+ if info and info.get("detailed_info"):
295
+ st.markdown(translate_text("#### Detailed Plant Disease Information"))
296
+ st.markdown(translate_text(info.get("detailed_info")))
297
+ else:
298
+ st.info(translate_text("Detailed information is not available at the moment."))
299
+
300
+ # Inline web pesticide recommendations
301
+ web_recommendation = get_web_pesticide_info(predicted_class, plant_type)
302
+ if web_recommendation:
303
+ st.markdown(translate_text("#### Additional Pesticide Recommendations"))
304
+ st.markdown(f"{translate_text('Title')}:** {translate_text(web_recommendation['title'])}")
305
+ st.markdown(f"{translate_text('Summary')}:** {translate_text(web_recommendation['summary'])}")
306
+ if web_recommendation['link']:
307
+ st.markdown(f"[{translate_text('Read More')}]({web_recommendation['link']})")
308
+ else:
309
+ st.info(translate_text("No additional pesticide recommendations available."))
310
+
311
+
312
+ # Commercial Products Tab
313
+ with tabs[1]:
314
+ with st.spinner(translate_text("Retrieving commercial product details...")):
315
+ commercial_products = get_commercial_product_info(pesticide)
316
+ if commercial_products:
317
+ for item in commercial_products:
318
+ st.markdown(f"{translate_text('Title')}:** {translate_text(item['title'])}")
319
+ st.markdown(f"{translate_text('Snippet')}:** {translate_text(item['snippet'])}")
320
+ if item['link']:
321
+ st.markdown(f"[{translate_text('Read More')}]({item['link']})")
322
+ st.markdown("---")
323
+ else:
324
+ st.info(translate_text("No commercial product details available."))
325
+
326
+
327
+
328
+ # More Articles Tab
329
+ with tabs[2]:
330
+ with st.spinner(translate_text("Retrieving additional articles...")):
331
+ more_info = get_more_web_info(f"{predicted_class} in {plant_type}")
332
+ if more_info:
333
+ for item in more_info:
334
+ st.markdown(f"{translate_text('Title')}:** {translate_text(item['title'])}")
335
+ st.markdown(f"{translate_text('Snippet')}:** {translate_text(item['snippet'])}")
336
+ if item['link']:
337
+ st.markdown(f"[{translate_text('Read More')}]({item['link']})")
338
+ st.markdown("---")
339
+ else:
340
+ st.info(translate_text("No additional articles available."))
341
+ else:
342
+ st.error(translate_text("Error in classification. Please try again."))
343
+ else:
344
+ st.info(translate_text("Please upload an image from the sidebar to get started."))
345
+
346
+
347
+ if __name__ == "_main_":
348
+ main()
models/cotton_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4916bb8bf15a1d68677cfcf999f9f101d114535192f0443cea62ea447a5f08d1
3
+ size 9349072
models/maize_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:420bbc37a4973c870e7a0dea8c4be38a1ba4ad9b8d893502df0b10c7c0cd792a
3
+ size 9349072
models/rice.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8023e08529b017c4a0171bb3c4b800491affcce183a0af31bbd08712dec9b2c4
3
+ size 9302448
models/sugercane_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fc1829fe65593eb62269fe81f411c4e6de8c2db7cddc11f40b7914c6c989d11
3
+ size 9333712
models/wheat_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e4f281ac3b830933dfc3599f139a11b952c61fb0f4afcba41b7865beb293748
3
+ size 9333712