Spaces:
Sleeping
Sleeping
AdityaAdaki
commited on
Commit
·
880bb9c
1
Parent(s):
35911bb
Add main.py
Browse files
main.py
CHANGED
@@ -1,10 +1,468 @@
|
|
1 |
-
from flask import Flask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = Flask(__name__)
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
@app.route('/')
|
6 |
-
def
|
7 |
-
return '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
if __name__ == '__main__':
|
10 |
-
app.run(
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify
|
2 |
+
from geopy.geocoders import Nominatim
|
3 |
+
import folium
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from datetime import datetime
|
7 |
+
from selenium import webdriver
|
8 |
+
from selenium.webdriver.chrome.options import Options
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
import logging
|
13 |
+
import uuid
|
14 |
+
from werkzeug.utils import secure_filename
|
15 |
+
from PIL import Image, ImageDraw
|
16 |
|
17 |
app = Flask(__name__)
|
18 |
|
19 |
+
# Configure screenshot directory
|
20 |
+
SCREENSHOT_DIR = os.path.join(app.static_folder, 'screenshots')
|
21 |
+
os.makedirs(SCREENSHOT_DIR, exist_ok=True)
|
22 |
+
|
23 |
+
UPLOAD_FOLDER = os.path.join(app.static_folder, 'uploads')
|
24 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'tif', 'tiff'}
|
25 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
26 |
+
|
27 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
28 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
|
29 |
+
|
30 |
+
def allowed_file(filename):
|
31 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
32 |
+
|
33 |
+
def kmeans_segmentation(image, n_clusters=8):
|
34 |
+
"""
|
35 |
+
Enhanced segmentation using multiple color spaces and improved filters
|
36 |
+
"""
|
37 |
+
try:
|
38 |
+
# Convert PIL Image to CV2 format
|
39 |
+
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
40 |
+
|
41 |
+
# Create mask for non-black pixels with more lenient threshold
|
42 |
+
hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
|
43 |
+
non_black_mask = cv2.inRange(hsv, np.array([0, 0, 15]), np.array([180, 255, 255]))
|
44 |
+
|
45 |
+
# Enhanced color ranges for better classification
|
46 |
+
color_ranges = {
|
47 |
+
'vegetation': {
|
48 |
+
'hsv': {
|
49 |
+
'lower': np.array([30, 40, 40]),
|
50 |
+
'upper': np.array([90, 255, 255])
|
51 |
+
},
|
52 |
+
'lab': {
|
53 |
+
'lower': np.array([0, 0, 125]),
|
54 |
+
'upper': np.array([255, 120, 255])
|
55 |
+
},
|
56 |
+
'color': (0, 255, 0) # Green
|
57 |
+
},
|
58 |
+
'water': {
|
59 |
+
'hsv': {
|
60 |
+
'lower': np.array([85, 30, 30]),
|
61 |
+
'upper': np.array([140, 255, 255])
|
62 |
+
},
|
63 |
+
'lab': {
|
64 |
+
'lower': np.array([0, 115, 0]),
|
65 |
+
'upper': np.array([255, 255, 130])
|
66 |
+
},
|
67 |
+
'color': (255, 0, 0) # Blue
|
68 |
+
},
|
69 |
+
'building': {
|
70 |
+
'hsv': {
|
71 |
+
'lower': np.array([0, 0, 100]),
|
72 |
+
'upper': np.array([180, 50, 255])
|
73 |
+
},
|
74 |
+
'lab': {
|
75 |
+
'lower': np.array([50, 115, 115]),
|
76 |
+
'upper': np.array([200, 140, 140])
|
77 |
+
},
|
78 |
+
'color': (128, 128, 128) # Gray
|
79 |
+
},
|
80 |
+
'terrain': {
|
81 |
+
'hsv': {
|
82 |
+
'lower': np.array([0, 20, 40]), # Broader range for terrain
|
83 |
+
'upper': np.array([30, 255, 220])
|
84 |
+
},
|
85 |
+
'lab': {
|
86 |
+
'lower': np.array([20, 110, 110]), # Adjusted LAB range
|
87 |
+
'upper': np.array([200, 140, 140])
|
88 |
+
},
|
89 |
+
'color': (139, 69, 19) # Brown
|
90 |
+
}
|
91 |
+
}
|
92 |
+
|
93 |
+
# Get only non-black pixels for clustering
|
94 |
+
valid_pixels = cv_image[non_black_mask > 0].reshape(-1, 3).astype(np.float32)
|
95 |
+
|
96 |
+
if len(valid_pixels) == 0:
|
97 |
+
raise ValueError("No valid pixels found after filtering")
|
98 |
+
|
99 |
+
# Perform k-means clustering on non-black pixels
|
100 |
+
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
|
101 |
+
_, labels, centers = cv2.kmeans(valid_pixels, n_clusters, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
|
102 |
+
|
103 |
+
# Convert centers to uint8
|
104 |
+
centers = np.uint8(centers)
|
105 |
+
|
106 |
+
# Create segmented image
|
107 |
+
height, width = cv_image.shape[:2]
|
108 |
+
segmented = np.zeros((height, width, 3), dtype=np.uint8)
|
109 |
+
|
110 |
+
# Create mask for each cluster
|
111 |
+
valid_indices = np.where(non_black_mask > 0)
|
112 |
+
segmented[valid_indices] = centers[labels.flatten()]
|
113 |
+
|
114 |
+
results = {}
|
115 |
+
masks = {}
|
116 |
+
total_valid_pixels = np.count_nonzero(non_black_mask)
|
117 |
+
|
118 |
+
# Initialize masks for each feature
|
119 |
+
for feature in color_ranges:
|
120 |
+
masks[feature] = np.zeros((height, width, 3), dtype=np.uint8)
|
121 |
+
masks['other'] = np.zeros((height, width, 3), dtype=np.uint8)
|
122 |
+
|
123 |
+
# Analyze original image colors for each cluster
|
124 |
+
for cluster_id in range(n_clusters):
|
125 |
+
cluster_mask = np.zeros((height, width), dtype=np.uint8)
|
126 |
+
cluster_mask[valid_indices] = (labels.flatten() == cluster_id).astype(np.uint8)
|
127 |
+
|
128 |
+
# Get original colors for this cluster
|
129 |
+
cluster_pixels = cv_image[cluster_mask > 0]
|
130 |
+
if len(cluster_pixels) == 0:
|
131 |
+
continue
|
132 |
+
|
133 |
+
# Convert to both HSV and LAB color spaces
|
134 |
+
cluster_hsv = cv2.cvtColor(cluster_pixels.reshape(-1, 1, 3), cv2.COLOR_BGR2HSV)
|
135 |
+
cluster_lab = cv2.cvtColor(cluster_pixels.reshape(-1, 1, 3), cv2.COLOR_BGR2LAB)
|
136 |
+
|
137 |
+
# Count pixels matching each feature in both color spaces
|
138 |
+
feature_counts = {}
|
139 |
+
for feature, ranges in color_ranges.items():
|
140 |
+
hsv_mask = cv2.inRange(cluster_hsv, ranges['hsv']['lower'], ranges['hsv']['upper'])
|
141 |
+
lab_mask = cv2.inRange(cluster_lab, ranges['lab']['lower'], ranges['lab']['upper'])
|
142 |
+
|
143 |
+
# Combine results from both color spaces
|
144 |
+
combined_mask = cv2.bitwise_or(hsv_mask, lab_mask)
|
145 |
+
feature_counts[feature] = np.count_nonzero(combined_mask)
|
146 |
+
|
147 |
+
# Additional texture analysis for building detection
|
148 |
+
if feature == 'building':
|
149 |
+
gray = cv2.cvtColor(cluster_pixels.reshape(-1, 1, 3), cv2.COLOR_BGR2GRAY)
|
150 |
+
local_std = np.std(gray)
|
151 |
+
|
152 |
+
# Calculate gradient magnitude using Sobel
|
153 |
+
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
|
154 |
+
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
|
155 |
+
gradient_magnitude = np.sqrt(sobelx**2 + sobely**2)
|
156 |
+
|
157 |
+
# Adjust feature count based on texture analysis
|
158 |
+
if local_std < 30 and np.mean(gradient_magnitude) > 10:
|
159 |
+
feature_counts[feature] *= 1.5 # Boost building detection score
|
160 |
+
elif local_std > 50:
|
161 |
+
feature_counts[feature] *= 0.5 # Reduce building detection score
|
162 |
+
|
163 |
+
# Additional texture and color analysis for terrain/ground
|
164 |
+
elif feature == 'terrain':
|
165 |
+
# Calculate texture features
|
166 |
+
gray = cv2.cvtColor(cluster_pixels.reshape(-1, 1, 3), cv2.COLOR_BGR2GRAY)
|
167 |
+
local_std = np.std(gray)
|
168 |
+
|
169 |
+
# Calculate GLCM features
|
170 |
+
glcm = np.zeros((256, 256), dtype=np.uint8)
|
171 |
+
for i in range(len(gray)-1):
|
172 |
+
glcm[gray[i], gray[i+1]] += 1
|
173 |
+
glcm_sum = np.sum(glcm)
|
174 |
+
if glcm_sum > 0:
|
175 |
+
glcm = glcm / glcm_sum
|
176 |
+
|
177 |
+
# Calculate homogeneity
|
178 |
+
homogeneity = np.sum(glcm / (1 + np.abs(np.arange(256)[:, None] - np.arange(256))))
|
179 |
+
|
180 |
+
# Color analysis
|
181 |
+
avg_saturation = np.mean(cluster_hsv[:, :, 1])
|
182 |
+
avg_value = np.mean(cluster_hsv[:, :, 2])
|
183 |
+
|
184 |
+
# Adjust feature count based on multiple criteria
|
185 |
+
if (20 < local_std < 60 and homogeneity > 0.5
|
186 |
+
and avg_saturation < 100 and 40 < avg_value < 200):
|
187 |
+
feature_counts[feature] *= 1.8 # Boost terrain detection
|
188 |
+
elif local_std > 80 or avg_saturation > 150:
|
189 |
+
feature_counts[feature] *= 0.4 # Reduce score
|
190 |
+
|
191 |
+
# Check for grass-like patterns
|
192 |
+
if (30 <= np.mean(cluster_hsv[:, :, 0]) <= 90
|
193 |
+
and avg_saturation > 30 and local_std < 40):
|
194 |
+
feature_counts['vegetation'] = feature_counts.get('vegetation', 0) + feature_counts[feature]
|
195 |
+
feature_counts[feature] *= 0.5
|
196 |
+
|
197 |
+
# Assign cluster to feature with highest pixel count
|
198 |
+
if any(feature_counts.values()):
|
199 |
+
dominant_feature = max(feature_counts.items(), key=lambda x: x[1])[0]
|
200 |
+
if dominant_feature not in results:
|
201 |
+
results[dominant_feature] = 0
|
202 |
+
|
203 |
+
pixel_count = np.count_nonzero(cluster_mask)
|
204 |
+
percentage = (pixel_count / total_valid_pixels) * 100
|
205 |
+
results[dominant_feature] += percentage
|
206 |
+
|
207 |
+
# Update feature mask
|
208 |
+
masks[dominant_feature][cluster_mask > 0] = color_ranges[dominant_feature]['color']
|
209 |
+
else:
|
210 |
+
# Unclassified pixels
|
211 |
+
if 'other' not in results:
|
212 |
+
results['other'] = 0
|
213 |
+
pixel_count = np.count_nonzero(cluster_mask)
|
214 |
+
percentage = (pixel_count / total_valid_pixels) * 100
|
215 |
+
results['other'] += percentage
|
216 |
+
masks['other'][cluster_mask > 0] = (200, 200, 200) # Light gray
|
217 |
+
|
218 |
+
# Filter results and save masks
|
219 |
+
filtered_results = {}
|
220 |
+
filtered_masks = {}
|
221 |
+
|
222 |
+
for feature, percentage in results.items():
|
223 |
+
if percentage > 0.5: # Only include if more than 0.5%
|
224 |
+
filtered_results[feature] = round(percentage, 1)
|
225 |
+
|
226 |
+
# Save mask
|
227 |
+
mask_filename = f'mask_{feature}_{uuid.uuid4().hex[:8]}.png'
|
228 |
+
mask_path = os.path.join(app.static_folder, 'masks', mask_filename)
|
229 |
+
cv2.imwrite(mask_path, masks[feature])
|
230 |
+
filtered_masks[feature] = f'/static/masks/{mask_filename}'
|
231 |
+
|
232 |
+
# Save segmented image
|
233 |
+
segmented_filename = f'segmented_{uuid.uuid4().hex[:8]}.png'
|
234 |
+
segmented_path = os.path.join(app.static_folder, 'masks', segmented_filename)
|
235 |
+
cv2.imwrite(segmented_path, segmented)
|
236 |
+
filtered_masks['segmented'] = f'/static/masks/{segmented_filename}'
|
237 |
+
|
238 |
+
return {
|
239 |
+
'percentages': dict(sorted(filtered_results.items(), key=lambda x: x[1], reverse=True)),
|
240 |
+
'masks': filtered_masks
|
241 |
+
}
|
242 |
+
|
243 |
+
except Exception as e:
|
244 |
+
logging.error(f"Segmentation error: {str(e)}")
|
245 |
+
raise
|
246 |
+
|
247 |
+
def setup_webdriver():
|
248 |
+
chrome_options = Options()
|
249 |
+
chrome_options.add_argument('--headless')
|
250 |
+
chrome_options.add_argument('--no-sandbox')
|
251 |
+
chrome_options.add_argument('--disable-dev-shm-usage')
|
252 |
+
chrome_options.binary_location = '/usr/bin/chromium'
|
253 |
+
return webdriver.Chrome(options=chrome_options)
|
254 |
+
|
255 |
+
def create_polygon_mask(image_size, points):
|
256 |
+
"""Create a mask image from polygon points"""
|
257 |
+
mask = Image.new('L', image_size, 0)
|
258 |
+
draw = ImageDraw.Draw(mask)
|
259 |
+
polygon_points = [(p['x'], p['y']) for p in points]
|
260 |
+
draw.polygon(polygon_points, fill=255)
|
261 |
+
return mask
|
262 |
+
|
263 |
@app.route('/')
|
264 |
+
def index():
|
265 |
+
return render_template('index.html')
|
266 |
+
|
267 |
+
@app.route('/search_location', methods=['POST'])
|
268 |
+
def search_location():
|
269 |
+
try:
|
270 |
+
location = request.form.get('location')
|
271 |
+
|
272 |
+
# Geocode the location
|
273 |
+
geolocator = Nominatim(user_agent="map_screenshot_app")
|
274 |
+
location_data = geolocator.geocode(location)
|
275 |
+
|
276 |
+
if not location_data:
|
277 |
+
return jsonify({'error': 'Location not found'}), 404
|
278 |
+
|
279 |
+
# Create a Folium map with controls disabled
|
280 |
+
m = folium.Map(
|
281 |
+
location=[location_data.latitude, location_data.longitude],
|
282 |
+
zoom_start=20,
|
283 |
+
tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
|
284 |
+
attr='Esri',
|
285 |
+
# zoom_control=False, # Disable zoom control
|
286 |
+
# dragging=False, # Disable dragging
|
287 |
+
# scrollWheelZoom=False # Disable scroll wheel zoom
|
288 |
+
)
|
289 |
+
|
290 |
+
# Save the map
|
291 |
+
map_path = os.path.join(app.static_folder, 'temp_map.html')
|
292 |
+
m.save(map_path)
|
293 |
+
|
294 |
+
return jsonify({
|
295 |
+
'lat': location_data.latitude,
|
296 |
+
'lon': location_data.longitude,
|
297 |
+
'address': location_data.address
|
298 |
+
})
|
299 |
+
|
300 |
+
except Exception as e:
|
301 |
+
return jsonify({'error': str(e)}), 500
|
302 |
+
|
303 |
+
@app.route('/capture_screenshot', methods=['POST'])
|
304 |
+
def capture_screenshot():
|
305 |
+
try:
|
306 |
+
data = request.get_json()
|
307 |
+
width = data.get('width', 600)
|
308 |
+
height = data.get('height', 400)
|
309 |
+
polygon_points = data.get('polygon', None)
|
310 |
+
map_state = data.get('mapState', None)
|
311 |
+
|
312 |
+
filename = f"screenshot_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
|
313 |
+
filepath = os.path.join(SCREENSHOT_DIR, filename)
|
314 |
+
|
315 |
+
# Create a new map with the current state
|
316 |
+
if map_state:
|
317 |
+
center = map_state['center']
|
318 |
+
zoom = map_state['zoom']
|
319 |
+
|
320 |
+
m = folium.Map(
|
321 |
+
location=[center['lat'], center['lng']],
|
322 |
+
zoom_start=zoom,
|
323 |
+
tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
|
324 |
+
attr='Esri',
|
325 |
+
width=width,
|
326 |
+
height=height
|
327 |
+
)
|
328 |
+
|
329 |
+
# Set the bounds
|
330 |
+
bounds = map_state['bounds']
|
331 |
+
m.fit_bounds([[bounds['south'], bounds['west']],
|
332 |
+
[bounds['north'], bounds['east']]])
|
333 |
+
|
334 |
+
# Add custom JavaScript to ensure correct zoom
|
335 |
+
m.get_root().html.add_child(folium.Element(f"""
|
336 |
+
<script>
|
337 |
+
document.addEventListener('DOMContentLoaded', function() {{
|
338 |
+
setTimeout(function() {{
|
339 |
+
var map = document.querySelector('#map');
|
340 |
+
if (map && map._leaflet_map) {{
|
341 |
+
map._leaflet_map.setView([{center['lat']}, {center['lng']}], {zoom});
|
342 |
+
}}
|
343 |
+
}}, 1000);
|
344 |
+
}});
|
345 |
+
</script>
|
346 |
+
"""))
|
347 |
+
|
348 |
+
# Save the map
|
349 |
+
map_path = os.path.join(app.static_folder, 'temp_map.html')
|
350 |
+
m.save(map_path)
|
351 |
+
|
352 |
+
# Increase wait time to ensure map loads completely
|
353 |
+
time.sleep(1)
|
354 |
+
|
355 |
+
driver = setup_webdriver()
|
356 |
+
try:
|
357 |
+
driver.set_window_size(width + 50, height + 50) # Add padding to prevent scrollbars
|
358 |
+
map_url = f"http://localhost:{app.config['PORT']}/static/temp_map.html"
|
359 |
+
driver.get(map_url)
|
360 |
+
|
361 |
+
# Wait for map to load and settle
|
362 |
+
time.sleep(3)
|
363 |
+
|
364 |
+
# Take screenshot
|
365 |
+
driver.save_screenshot(filepath)
|
366 |
+
|
367 |
+
if polygon_points and len(polygon_points) >= 3:
|
368 |
+
# Create polygon cutout
|
369 |
+
img = Image.open(filepath)
|
370 |
+
mask = create_polygon_mask(img.size, polygon_points)
|
371 |
+
|
372 |
+
# Create cutout image
|
373 |
+
cutout = Image.new('RGBA', img.size, (0, 0, 0, 0))
|
374 |
+
cutout.paste(img, mask=mask)
|
375 |
+
|
376 |
+
# Save cutout
|
377 |
+
cutout_filename = f"cutout_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
|
378 |
+
cutout_filepath = os.path.join(SCREENSHOT_DIR, cutout_filename)
|
379 |
+
cutout.save(cutout_filepath)
|
380 |
+
|
381 |
+
return jsonify({
|
382 |
+
'success': True,
|
383 |
+
'screenshot_path': f'/static/screenshots/{filename}',
|
384 |
+
'cutout_path': f'/static/screenshots/{cutout_filename}'
|
385 |
+
})
|
386 |
+
|
387 |
+
return jsonify({
|
388 |
+
'success': True,
|
389 |
+
'screenshot_path': f'/static/screenshots/{filename}'
|
390 |
+
})
|
391 |
+
|
392 |
+
finally:
|
393 |
+
driver.quit()
|
394 |
+
|
395 |
+
except Exception as e:
|
396 |
+
logging.error(f"Screenshot error: {str(e)}")
|
397 |
+
return jsonify({'error': str(e)}), 500
|
398 |
+
|
399 |
+
@app.route('/analyze')
|
400 |
+
def analyze():
|
401 |
+
try:
|
402 |
+
image_path = request.args.get('image')
|
403 |
+
if not image_path:
|
404 |
+
return "No image provided", 400
|
405 |
+
|
406 |
+
# Create masks directory if it doesn't exist
|
407 |
+
masks_dir = os.path.join(app.static_folder, 'masks')
|
408 |
+
os.makedirs(masks_dir, exist_ok=True)
|
409 |
+
|
410 |
+
# Clean up old mask files
|
411 |
+
for f in os.listdir(masks_dir):
|
412 |
+
if f.startswith(('mask_', 'segmented_')):
|
413 |
+
try:
|
414 |
+
os.remove(os.path.join(masks_dir, f))
|
415 |
+
except:
|
416 |
+
pass
|
417 |
+
|
418 |
+
# Clean up the image path
|
419 |
+
image_path = image_path.split('?')[0]
|
420 |
+
image_path = image_path.replace('/static/', '')
|
421 |
+
full_path = os.path.join(app.static_folder, image_path)
|
422 |
+
|
423 |
+
if not os.path.exists(full_path):
|
424 |
+
return f"Image file not found: {image_path}", 404
|
425 |
+
|
426 |
+
# Load and process image
|
427 |
+
image = Image.open(full_path)
|
428 |
+
|
429 |
+
# Ensure image is in RGB mode
|
430 |
+
if image.mode != 'RGB':
|
431 |
+
image = image.convert('RGB')
|
432 |
+
|
433 |
+
# Perform k-means segmentation
|
434 |
+
segmentation_results = kmeans_segmentation(image)
|
435 |
+
|
436 |
+
return render_template('analysis.html',
|
437 |
+
image_path=request.args.get('image').split('?')[0],
|
438 |
+
results=segmentation_results['percentages'],
|
439 |
+
masks=segmentation_results['masks'])
|
440 |
+
|
441 |
+
except Exception as e:
|
442 |
+
logging.error(f"Error processing image: {str(e)}")
|
443 |
+
return f"Error processing image: {str(e)}", 500
|
444 |
+
|
445 |
+
@app.route('/upload', methods=['POST'])
|
446 |
+
def upload_file():
|
447 |
+
if 'file' not in request.files:
|
448 |
+
return jsonify({'error': 'No file part'}), 400
|
449 |
+
|
450 |
+
file = request.files['file']
|
451 |
+
if file.filename == '':
|
452 |
+
return jsonify({'error': 'No selected file'}), 400
|
453 |
+
|
454 |
+
if file and allowed_file(file.filename):
|
455 |
+
filename = secure_filename(file.filename)
|
456 |
+
unique_filename = f"{uuid.uuid4().hex}_{filename}"
|
457 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
|
458 |
+
file.save(filepath)
|
459 |
+
|
460 |
+
return jsonify({
|
461 |
+
'success': True,
|
462 |
+
'filepath': f'/static/uploads/{unique_filename}'
|
463 |
+
})
|
464 |
+
|
465 |
+
return jsonify({'error': 'Invalid file type'}), 400
|
466 |
|
467 |
if __name__ == '__main__':
|
468 |
+
app.run(host='0.0.0.0', port=7860)
|