Spaces:
Running
Running
Add some tqa results
Browse files- .gitattributes +1 -0
- app.py +6 -3
- concatenated_output_tqa.csv +3 -0
.gitattributes
CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
evaluation_p_np_metrics.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
qatch_logo.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
evaluation_p_np_metrics.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
qatch_logo.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
concatenated_output_tqa.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -32,6 +32,7 @@ import utilities as us
|
|
32 |
#pnp_path = os.path.join("data", "evaluation_p_np_metrics.csv")
|
33 |
pnp_path = "concatenated_output.csv"
|
34 |
PATH_PKL_TABLES = 'tables_dict_beaver.pkl'
|
|
|
35 |
js_func = """
|
36 |
function refresh() {
|
37 |
const url = new URL(window.location);
|
@@ -694,7 +695,8 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as
|
|
694 |
metrics_conc = pd.DataFrame()
|
695 |
columns_to_visulize = ["db_path", "tbl_name", "test_category", "sql_tag", "query", "question", "predicted_sql", "time", "price", "answer"]
|
696 |
if (input_data['input_method']=="default"):
|
697 |
-
target_df = us.load_csv(pnp_path) #target_df = us.load_csv("priority_non_priority_metrics.csv")
|
|
|
698 |
#predictions_dict = {model: pd.DataFrame(columns=target_df.columns) for model in model_list}
|
699 |
target_df = target_df[target_df["tbl_name"].isin(input_data['data']['selected_tables'])]
|
700 |
target_df = target_df[target_df["model"].isin(input_data['models'])]
|
@@ -1023,7 +1025,8 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as
|
|
1023 |
|
1024 |
if input_data["input_method"]=="default":
|
1025 |
global flag_TQA
|
1026 |
-
df = pd.read_csv(pnp_path)
|
|
|
1027 |
df = df[df['model'].isin(input_data["models"])]
|
1028 |
df = df[df['tbl_name'].isin(input_data["data"]["selected_tables"])]
|
1029 |
|
@@ -1033,7 +1036,7 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as
|
|
1033 |
df['model'] = df['model'].replace('llama-70', 'Llama-70B')
|
1034 |
df['model'] = df['model'].replace('llama-8', 'Llama-8B')
|
1035 |
df['test_category'] = df['test_category'].replace('many-to-many-generator', 'MANY-TO-MANY')
|
1036 |
-
if (flag_TQA) : flag_TQA = False #TODO delete after make pred
|
1037 |
return df
|
1038 |
return metrics_df_out
|
1039 |
|
|
|
32 |
#pnp_path = os.path.join("data", "evaluation_p_np_metrics.csv")
|
33 |
pnp_path = "concatenated_output.csv"
|
34 |
PATH_PKL_TABLES = 'tables_dict_beaver.pkl'
|
35 |
+
PNP_TQA_PATH = 'concatenated_output_tqa.csv'
|
36 |
js_func = """
|
37 |
function refresh() {
|
38 |
const url = new URL(window.location);
|
|
|
695 |
metrics_conc = pd.DataFrame()
|
696 |
columns_to_visulize = ["db_path", "tbl_name", "test_category", "sql_tag", "query", "question", "predicted_sql", "time", "price", "answer"]
|
697 |
if (input_data['input_method']=="default"):
|
698 |
+
#target_df = us.load_csv(pnp_path) #target_df = us.load_csv("priority_non_priority_metrics.csv")
|
699 |
+
target_df = us.load_csv(pnp_path) if not flag_TQA else us.load_csv(PNP_TQA_PATH)
|
700 |
#predictions_dict = {model: pd.DataFrame(columns=target_df.columns) for model in model_list}
|
701 |
target_df = target_df[target_df["tbl_name"].isin(input_data['data']['selected_tables'])]
|
702 |
target_df = target_df[target_df["model"].isin(input_data['models'])]
|
|
|
1025 |
|
1026 |
if input_data["input_method"]=="default":
|
1027 |
global flag_TQA
|
1028 |
+
#df = pd.read_csv(pnp_path)
|
1029 |
+
df = us.load_csv(pnp_path) if not flag_TQA else us.load_csv(PNP_TQA_PATH)
|
1030 |
df = df[df['model'].isin(input_data["models"])]
|
1031 |
df = df[df['tbl_name'].isin(input_data["data"]["selected_tables"])]
|
1032 |
|
|
|
1036 |
df['model'] = df['model'].replace('llama-70', 'Llama-70B')
|
1037 |
df['model'] = df['model'].replace('llama-8', 'Llama-8B')
|
1038 |
df['test_category'] = df['test_category'].replace('many-to-many-generator', 'MANY-TO-MANY')
|
1039 |
+
#if (flag_TQA) : flag_TQA = False #TODO delete after make pred
|
1040 |
return df
|
1041 |
return metrics_df_out
|
1042 |
|
concatenated_output_tqa.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba5eeda2f030e9f23c43c25b6dee26f7afaf1b1488b796bb1bc9f901ab619aba
|
3 |
+
size 18662081
|