franceth commited on
Commit
14711dc
·
verified ·
1 Parent(s): 6a3a524

Add some tqa results

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. app.py +6 -3
  3. concatenated_output_tqa.csv +3 -0
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  evaluation_p_np_metrics.csv filter=lfs diff=lfs merge=lfs -text
37
  qatch_logo.png filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  evaluation_p_np_metrics.csv filter=lfs diff=lfs merge=lfs -text
37
  qatch_logo.png filter=lfs diff=lfs merge=lfs -text
38
+ concatenated_output_tqa.csv filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -32,6 +32,7 @@ import utilities as us
32
  #pnp_path = os.path.join("data", "evaluation_p_np_metrics.csv")
33
  pnp_path = "concatenated_output.csv"
34
  PATH_PKL_TABLES = 'tables_dict_beaver.pkl'
 
35
  js_func = """
36
  function refresh() {
37
  const url = new URL(window.location);
@@ -694,7 +695,8 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as
694
  metrics_conc = pd.DataFrame()
695
  columns_to_visulize = ["db_path", "tbl_name", "test_category", "sql_tag", "query", "question", "predicted_sql", "time", "price", "answer"]
696
  if (input_data['input_method']=="default"):
697
- target_df = us.load_csv(pnp_path) #target_df = us.load_csv("priority_non_priority_metrics.csv")
 
698
  #predictions_dict = {model: pd.DataFrame(columns=target_df.columns) for model in model_list}
699
  target_df = target_df[target_df["tbl_name"].isin(input_data['data']['selected_tables'])]
700
  target_df = target_df[target_df["model"].isin(input_data['models'])]
@@ -1023,7 +1025,8 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as
1023
 
1024
  if input_data["input_method"]=="default":
1025
  global flag_TQA
1026
- df = pd.read_csv(pnp_path)
 
1027
  df = df[df['model'].isin(input_data["models"])]
1028
  df = df[df['tbl_name'].isin(input_data["data"]["selected_tables"])]
1029
 
@@ -1033,7 +1036,7 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as
1033
  df['model'] = df['model'].replace('llama-70', 'Llama-70B')
1034
  df['model'] = df['model'].replace('llama-8', 'Llama-8B')
1035
  df['test_category'] = df['test_category'].replace('many-to-many-generator', 'MANY-TO-MANY')
1036
- if (flag_TQA) : flag_TQA = False #TODO delete after make pred
1037
  return df
1038
  return metrics_df_out
1039
 
 
32
  #pnp_path = os.path.join("data", "evaluation_p_np_metrics.csv")
33
  pnp_path = "concatenated_output.csv"
34
  PATH_PKL_TABLES = 'tables_dict_beaver.pkl'
35
+ PNP_TQA_PATH = 'concatenated_output_tqa.csv'
36
  js_func = """
37
  function refresh() {
38
  const url = new URL(window.location);
 
695
  metrics_conc = pd.DataFrame()
696
  columns_to_visulize = ["db_path", "tbl_name", "test_category", "sql_tag", "query", "question", "predicted_sql", "time", "price", "answer"]
697
  if (input_data['input_method']=="default"):
698
+ #target_df = us.load_csv(pnp_path) #target_df = us.load_csv("priority_non_priority_metrics.csv")
699
+ target_df = us.load_csv(pnp_path) if not flag_TQA else us.load_csv(PNP_TQA_PATH)
700
  #predictions_dict = {model: pd.DataFrame(columns=target_df.columns) for model in model_list}
701
  target_df = target_df[target_df["tbl_name"].isin(input_data['data']['selected_tables'])]
702
  target_df = target_df[target_df["model"].isin(input_data['models'])]
 
1025
 
1026
  if input_data["input_method"]=="default":
1027
  global flag_TQA
1028
+ #df = pd.read_csv(pnp_path)
1029
+ df = us.load_csv(pnp_path) if not flag_TQA else us.load_csv(PNP_TQA_PATH)
1030
  df = df[df['model'].isin(input_data["models"])]
1031
  df = df[df['tbl_name'].isin(input_data["data"]["selected_tables"])]
1032
 
 
1036
  df['model'] = df['model'].replace('llama-70', 'Llama-70B')
1037
  df['model'] = df['model'].replace('llama-8', 'Llama-8B')
1038
  df['test_category'] = df['test_category'].replace('many-to-many-generator', 'MANY-TO-MANY')
1039
+ #if (flag_TQA) : flag_TQA = False #TODO delete after make pred
1040
  return df
1041
  return metrics_df_out
1042
 
concatenated_output_tqa.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba5eeda2f030e9f23c43c25b6dee26f7afaf1b1488b796bb1bc9f901ab619aba
3
+ size 18662081