File size: 8,926 Bytes
cf815ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# database_functions.py
import psycopg2
import random
import string
from urllib.parse import urlparse
from datetime import datetime
import json
from dotenv import load_dotenv
import os

# Load environment variables from .env file
load_dotenv()

# Get the database URL from the environment variables
url = os.getenv("DATABASE_URL")
if not url:
    raise ValueError("DATABASE_URL is not set in the environment variables")

parsed_url = urlparse(url)

# Extract connection parameters
db_config = {
    'user': parsed_url.username,
    'password': parsed_url.password,
    'host': parsed_url.hostname,
    'port': parsed_url.port,
    'database': parsed_url.path.lstrip('/')
}

# Since we define password in schema, we will just generate password
def generate_password():
    characters = string.ascii_letters + string.digits + string.punctuation
    password = ''.join(random.choice(characters) for _ in range(8))
    return password

# add student method (privacy with only class & indexNo)
def add_user_privacy(class_name, index_no):
    connection = psycopg2.connect(**db_config)
    cursor = connection.cursor() 
    password = generate_password()
    dbMsg = ""

    try:
        # Check if user with the same email already exists
        cursor.execute("SELECT id FROM oc_students WHERE class = %s and index_no = %s", (class_name,index_no))
        existing_user = cursor.fetchone()
        if existing_user:
            user_id = existing_user[0]
            dbMsg = "User already exists"
        else:
            # If user doesn't exist, insert a new user
            cursor.execute("INSERT INTO oc_students (index_no, class, hashPassword) VALUES (%s, %s, %s) RETURNING id",
                       (index_no, class_name, password))
            user_id = cursor.fetchone()[0]  # Fetch the ID of the newly inserted user
            connection.commit()  # without this, data is not persist on db!
            dbMsg = "User Created"
        return user_id, dbMsg

    except psycopg2.Error as e:
        return "Error adding user:" +  str(e)

def add_submission(userid, transcribed_text, ai_responses, scores, feedback, questionNo):
    connection = psycopg2.connect(**db_config)
    cursor = connection.cursor() 
    dbMsg = ""
    
    try:
        current_datetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

        cursor.execute("INSERT INTO oc_submissions (userid, datetime, Transcribed_text, AI_conversation_responses, Scores, Feedback, questionNo) "
                       "VALUES (%s, %s, %s, %s, %s, %s, %s)",
                       (userid, current_datetime, transcribed_text, ai_responses, scores, feedback, questionNo))
        connection.commit()
        dbMsg = "Submission added"

    except psycopg2.Error as e:
        print("Error adding submission:", e)

    finally:
        if connection:
            cursor.close()
            connection.close()
            print("PostgreSQL connection is closed")

def get_submissions_by_date_and_class(from_date, to_date, class_name, display_ai_feedback):
    # Connect to the database
    conn = psycopg2.connect(**db_config)
    cursor = conn.cursor()

    try:
        print(f"From Date: {from_date}")
        print(f"To Date: {to_date}")
        print(f"Class Name: {class_name}")

        # Swap from_date and to_date if from_date is later than to_date
        if from_date > to_date:
            from_date, to_date = to_date, from_date

        query = """
            SELECT s.index_no, s.class, sub.datetime, sub.questionNo, sub.transcribed_text,
                   CASE WHEN %s THEN sub.ai_conversation_responses ELSE NULL END AS ai_conversation_responses,
                   sub.userid
            FROM oc_students AS s
            JOIN oc_submissions AS sub ON s.id = sub.userid
            WHERE TO_DATE(sub.datetime::text, 'YYYY-MM-DD') BETWEEN TO_DATE(%s, 'YYYY-MM-DD') AND TO_DATE(%s, 'YYYY-MM-DD')
            AND s.class = %s
            ORDER BY sub.userid, sub.questionNo, sub.datetime DESC
        """
        cursor.execute(query, (display_ai_feedback, from_date, to_date, class_name))

        results = cursor.fetchall()

        if results:
            return generate_report_as_json(results, display_ai_feedback)
        else:
            return [{"Email": "No data found for the selected date range and class", "Name": "", "Class": "", "Datetime": "", "Transcribed Text": "", "AI Conversation Responses": ""}]
    except Exception as e:
        print(f"An error occurred: {e}")
        return [{"Email": "Error occurred while fetching data", "Name": "", "Class": "", "Datetime": "", "Transcribed Text": "", "AI Conversation Responses": ""}]
    finally:
        cursor.close()
        conn.close()

def generate_report_as_json(results, display_ai_feedback):
    user_ids_info = []  # To store tuples of (UserID, Name, Class)
    user_question_map = {}  # To map UserID to answered questions

    if results:
        for result in results:
            user_id = result[6]  # Assuming UserID is at index 6

            # Storing tuples of (UserID, Name, Class)
            user_info = (user_id, result[0], result[1])  # (UserID, Name, Class)
            if user_info not in user_ids_info:
                user_ids_info.append(user_info)

            # Creating a map of UserIDs to answered questions
            question = result[3]  # Assuming Question number is at index 3
            details = {
                "Datetime": result[2].strftime("%Y-%m-%d %H:%M:%S") if result[2] else "",
                "Question": question,
                "Student Response": result[4],
                "AI Feedback": result[5] if display_ai_feedback else "Not displayed"
            }
            if user_id in user_question_map:
                user_question_map[user_id].append(details)
            else:
                user_question_map[user_id] = [details]

    report_data = []

    for user_info in user_ids_info:
        user_id, name, class_ = user_info

        user_dict = {
            "Index No": name,
            "Class": class_,
            "Questions": []
        }

        question_numbers = [1, 2, 3]  # List of required question numbers

        if user_id in user_question_map:
            user_questions = user_question_map[user_id]

            for question_details in user_questions:
                question_data = {
                    "Question": question_details["Question"],
                    "Datetime": question_details["Datetime"],
                    "Student Response": question_details["Student Response"],
                    "AI Feedback": question_details["AI Feedback"]
                }
                user_dict["Questions"].append(question_data)

                # Remove answered question number from the (fixed list)
                if question_data["Question"] in question_numbers:
                    question_numbers.remove(question_data["Question"])

        # Add NA entries for unanswered questions
        for missing_question in question_numbers:
            missing_question_data = {
                "Question": missing_question,
                "Datetime": "NA",
                "Student Response": "NA",
                "AI Feedback": "NA" if display_ai_feedback else "Not displayed"
            }
            user_dict["Questions"].append(missing_question_data)

        # Sort the user's questions by question number before appending to report
        user_dict["Questions"] = sorted(user_dict["Questions"], key=lambda x: x['Question'])

        report_data.append(user_dict)

    return json.dumps(report_data, indent=4)

def getUniqueSubmitDate():
    # Connect to the database
    conn = psycopg2.connect(**db_config)
    cursor = conn.cursor()

    try:
        # Fetch all submissions on the provided date
        cursor.execute("""
                SELECT DISTINCT DATE(datetime) AS unique_date
                FROM public.oc_submissions
                ORDER BY unique_date desc
                LIMIT 14;
                """)
        dates = [str(row[0]) for row in cursor.fetchall()] 
        return dates
    except Exception as e:
        print(f"An error occurred: {e}")
        return [{"Error": "Error occurred while fetching data"}]
    finally:
        cursor.close()
        conn.close()

def getUniqueClass():
    # Connect to the database
    conn = psycopg2.connect(**db_config)
    cursor = conn.cursor()

    try:
        # Fetch all submissions on the provided date
        cursor.execute("""
                SELECT DISTINCT s.class
                FROM oc_students AS s
                JOIN oc_submissions AS sub ON s.id = sub.userid
                ORDER BY s.class
                """)
        listClass = [str(row[0]) for row in cursor.fetchall()] 
        return listClass
    except Exception as e:
        print(f"An error occurred: {e}")
        return [{"Error": "Error occurred while fetching data"}]
    finally:
        cursor.close()
        conn.close()