Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing the requirements
|
2 |
+
import warnings
|
3 |
+
warnings.filterwarnings("ignore")
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from src.minicpm.response import describe_image
|
7 |
+
|
8 |
+
|
9 |
+
# Image, text query, and input parameters
|
10 |
+
image = gr.Image(type="pil", label="Image")
|
11 |
+
question = gr.Textbox(label="Question", placeholder="Enter your question here")
|
12 |
+
temperature = gr.Slider(
|
13 |
+
minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature"
|
14 |
+
)
|
15 |
+
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P")
|
16 |
+
top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K")
|
17 |
+
max_new_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens")
|
18 |
+
|
19 |
+
# Output for the interface
|
20 |
+
answer = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)
|
21 |
+
|
22 |
+
# Examples for the interface
|
23 |
+
examples = [
|
24 |
+
[
|
25 |
+
"images/cat.jpg",
|
26 |
+
"How many cats are there?",
|
27 |
+
0.7,
|
28 |
+
0.8,
|
29 |
+
100,
|
30 |
+
512,
|
31 |
+
],
|
32 |
+
[
|
33 |
+
"images/dog.jpg",
|
34 |
+
"¿De qué color es el perro?",
|
35 |
+
0.7,
|
36 |
+
0.8,
|
37 |
+
100,
|
38 |
+
512,
|
39 |
+
],
|
40 |
+
[
|
41 |
+
"images/bird.jpg",
|
42 |
+
"Que fait l'oiseau ?",
|
43 |
+
0.7,
|
44 |
+
0.8,
|
45 |
+
100,
|
46 |
+
512,
|
47 |
+
],
|
48 |
+
]
|
49 |
+
|
50 |
+
# Title, description, and article for the interface
|
51 |
+
title = "Visual Question Answering"
|
52 |
+
description = "Gradio Demo for the MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming. This model can answer questions about images in natural language. To use it, upload your image, type a question, select associated parameters, use the default values, click 'Submit', or click one of the examples to load them. You can read more at the links below."
|
53 |
+
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-o' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-o-2_6' target='_blank'>Model Page</a></p>"
|
54 |
+
|
55 |
+
|
56 |
+
# Launch the interface
|
57 |
+
interface = gr.Interface(
|
58 |
+
fn=describe_image,
|
59 |
+
inputs=[image, question, temperature, top_p, top_k, max_new_tokens],
|
60 |
+
outputs=answer,
|
61 |
+
examples=examples,
|
62 |
+
cache_examples=True,
|
63 |
+
cache_mode="lazy",
|
64 |
+
title=title,
|
65 |
+
description=description,
|
66 |
+
article=article,
|
67 |
+
theme="Glass",
|
68 |
+
flagging_mode="never",
|
69 |
+
)
|
70 |
+
interface.launch(debug=False)
|