Mask_image / app.py
snair94's picture
Update app.py
f73289b verified
import gradio as gr
from PIL import Image
import numpy as np
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from matplotlib.colors import to_rgb
import re
import cv2
# Load model
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
def parse_color(color_str):
"""
Converts a color string (hex, name, or rgba(...)) to an RGB tuple.
"""
try:
if isinstance(color_str, str):
if color_str.startswith("rgba("):
# Extract the 3 RGB components
numbers = list(map(float, re.findall(r"[\d.]+", color_str)))
if len(numbers) >= 3:
r, g, b = numbers[:3]
return int(r), int(g), int(b)
else:
# Use named or hex color
return tuple(int(255 * c) for c in to_rgb(color_str))
except Exception:
pass
raise ValueError(f"Invalid color format: {color_str}. Use hex like '#ff0000', color name like 'red', or rgba format.")
def apply_mask(image: Image.Image, prompt: str, color: str) -> Image.Image:
# Process the input image and prompt
inputs = processor(text=prompt, images=image, return_tensors="pt")
outputs = model(**inputs)
preds = outputs.logits[0]
# Get the binary mask from predictions
mask = preds.sigmoid().detach().cpu().numpy()
mask = (mask > 0.5).astype(np.uint8)
# Convert image to RGBA
image_np = np.array(image.convert("RGBA"))
# Resize mask to match image size
mask_resized = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]))
mask_3d = np.stack([mask_resized] * 4, axis=-1) # Extend mask to 3D
# Convert the color string to an RGB tuple
color_rgb = parse_color(color)
overlay_color = np.array([*color_rgb, 128], dtype=np.uint8) # RGBA with alpha 128
# Create an overlay with the selected color
overlay = np.zeros_like(image_np, dtype=np.uint8)
overlay[:] = overlay_color
# Apply the mask to the image
masked_image = np.where(mask_3d == 1, overlay, image_np)
return Image.fromarray(masked_image)
# Gradio Interface
iface = gr.Interface(
fn=apply_mask,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Textbox(label="Segmentation Prompt", placeholder="e.g., helmet, road, sky"),
gr.ColorPicker(label="Mask Color", value="#ff0000")
],
outputs=gr.Image(type="pil", label="Segmented Image"),
title="CLIPSeg Image Masking",
description="Upload an image, input a prompt (e.g., 'person', 'sky'), and pick a mask color."
)
iface.launch()