Spaces:
Running
Running
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation | |
from matplotlib.colors import to_rgb | |
import re | |
import cv2 | |
# Load model | |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") | |
def parse_color(color_str): | |
""" | |
Converts a color string (hex, name, or rgba(...)) to an RGB tuple. | |
""" | |
try: | |
if isinstance(color_str, str): | |
if color_str.startswith("rgba("): | |
# Extract the 3 RGB components | |
numbers = list(map(float, re.findall(r"[\d.]+", color_str))) | |
if len(numbers) >= 3: | |
r, g, b = numbers[:3] | |
return int(r), int(g), int(b) | |
else: | |
# Use named or hex color | |
return tuple(int(255 * c) for c in to_rgb(color_str)) | |
except Exception: | |
pass | |
raise ValueError(f"Invalid color format: {color_str}. Use hex like '#ff0000', color name like 'red', or rgba format.") | |
def apply_mask(image: Image.Image, prompt: str, color: str) -> Image.Image: | |
# Process the input image and prompt | |
inputs = processor(text=prompt, images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
preds = outputs.logits[0] | |
# Get the binary mask from predictions | |
mask = preds.sigmoid().detach().cpu().numpy() | |
mask = (mask > 0.5).astype(np.uint8) | |
# Convert image to RGBA | |
image_np = np.array(image.convert("RGBA")) | |
# Resize mask to match image size | |
mask_resized = cv2.resize(mask, (image_np.shape[1], image_np.shape[0])) | |
mask_3d = np.stack([mask_resized] * 4, axis=-1) # Extend mask to 3D | |
# Convert the color string to an RGB tuple | |
color_rgb = parse_color(color) | |
overlay_color = np.array([*color_rgb, 128], dtype=np.uint8) # RGBA with alpha 128 | |
# Create an overlay with the selected color | |
overlay = np.zeros_like(image_np, dtype=np.uint8) | |
overlay[:] = overlay_color | |
# Apply the mask to the image | |
masked_image = np.where(mask_3d == 1, overlay, image_np) | |
return Image.fromarray(masked_image) | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=apply_mask, | |
inputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Textbox(label="Segmentation Prompt", placeholder="e.g., helmet, road, sky"), | |
gr.ColorPicker(label="Mask Color", value="#ff0000") | |
], | |
outputs=gr.Image(type="pil", label="Segmented Image"), | |
title="CLIPSeg Image Masking", | |
description="Upload an image, input a prompt (e.g., 'person', 'sky'), and pick a mask color." | |
) | |
iface.launch() |