import os import subprocess from huggingface_hub import HfApi, HfFolder, upload_folder # === Configuración === HF_MODEL_ID = "tu_usuario/xtts-v2-finetuned" # <--- cambia con tu repo en HF HF_TOKEN = os.environ.get("HF_TOKEN") # Debe estar definido en tu Space/entorno DATASET_PATH = "/home/user/app/dataset" # Ruta a tu dataset OUTPUT_PATH = "/tmp/output_model" BASE_MODEL = "coqui/XTTS-v2" # === 1. Descargar modelo base de HF === print("=== Descargando modelo base desde Hugging Face ===") subprocess.run([ "huggingface-cli", "download", BASE_MODEL, "--local-dir", "./xtts_model" ], check=True) CONFIG_PATH = "./xtts_model/config.json" RESTORE_PATH = "./xtts_model/model.pth" # === 2. Editar configuración para tu dataset VoxPopuli === print("=== Editando configuración para fine-tuning con VoxPopuli ===") import json with open(CONFIG_PATH, "r") as f: config = json.load(f) config["output_path"] = OUTPUT_PATH config["datasets"] = [ { "formatter": "voxpopuli", "path": DATASET_PATH, "meta_file_train": "metadata.json" } ] config["run_name"] = "xtts-finetune-voxpopuli" config["lr"] = 1e-5 # más bajo para fine-tuning with open(CONFIG_PATH, "w") as f: json.dump(config, f, indent=2) # === 3. Lanzar entrenamiento === print("=== Iniciando fine-tuning de XTTS-v2 ===") subprocess.run([ "python", "TTS/bin/train_tts.py", "--config_path", CONFIG_PATH, "--restore_path", RESTORE_PATH ], check=True) # === 4. Subir modelo resultante a HF === print("=== Subiendo modelo fine-tuneado a Hugging Face Hub ===") api = HfApi() HfFolder.save_token(HF_TOKEN) upload_folder( repo_id=HF_MODEL_ID, repo_type="model", folder_path=OUTPUT_PATH, token=HF_TOKEN ) print("✅ Fine-tuning completado y modelo subido a Hugging Face.")