Spaces:
Sleeping
Sleeping
Sofia Casadei
commited on
Commit
Β·
8d6b944
1
Parent(s):
aacc5eb
up
Browse files- Dockerfile +1 -2
- mwe_whisper_flashattn.py +88 -0
Dockerfile
CHANGED
@@ -11,8 +11,7 @@ COPY --from=uv /uv /uv
|
|
11 |
|
12 |
# Install Python, pip, venv, and system dependencies
|
13 |
RUN apt-get update && \
|
14 |
-
apt-get
|
15 |
-
apt-get install -y --no-install-recommends \
|
16 |
python3.11 python3.11-venv python3-pip ffmpeg \
|
17 |
build-essential \
|
18 |
git \
|
|
|
11 |
|
12 |
# Install Python, pip, venv, and system dependencies
|
13 |
RUN apt-get update && \
|
14 |
+
apt-get install -y --fix-missing --no-install-recommends \
|
|
|
15 |
python3.11 python3.11-venv python3-pip ffmpeg \
|
16 |
build-essential \
|
17 |
git \
|
mwe_whisper_flashattn.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from transformers import (
|
6 |
+
AutoModelForSpeechSeq2Seq,
|
7 |
+
AutoProcessor,
|
8 |
+
pipeline,
|
9 |
+
)
|
10 |
+
from transformers.utils import is_flash_attn_2_available
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
MODEL_ID = "openai/whisper-large-v3-turbo"
|
15 |
+
LANGUAGE = "english"
|
16 |
+
|
17 |
+
device = "cuda"
|
18 |
+
use_device_map = True
|
19 |
+
try_compile_model = True
|
20 |
+
try_use_flash_attention = True
|
21 |
+
torch_dtype = torch.float16
|
22 |
+
np_dtype = np.float16
|
23 |
+
|
24 |
+
# Initialize the model (use flash attention on cuda if possible)
|
25 |
+
try:
|
26 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
27 |
+
MODEL_ID,
|
28 |
+
torch_dtype=torch_dtype,
|
29 |
+
low_cpu_mem_usage=True,
|
30 |
+
use_safetensors=True,
|
31 |
+
attn_implementation="flash_attention_2" if try_use_flash_attention else "sdpa",
|
32 |
+
device_map="auto" if use_device_map else None,
|
33 |
+
)
|
34 |
+
if not use_device_map:
|
35 |
+
model.to(device)
|
36 |
+
except RuntimeError as e:
|
37 |
+
try:
|
38 |
+
logger.warning("Falling back to device_map=None")
|
39 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
40 |
+
MODEL_ID,
|
41 |
+
torch_dtype=torch_dtype,
|
42 |
+
low_cpu_mem_usage=True,
|
43 |
+
use_safetensors=True,
|
44 |
+
attn_implementation="flash_attention_2" if try_use_flash_attention else "sdpa",
|
45 |
+
device_map=None,
|
46 |
+
)
|
47 |
+
model.to(device)
|
48 |
+
except RuntimeError as e:
|
49 |
+
try:
|
50 |
+
logger.warning("Disabling flash attention")
|
51 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
52 |
+
MODEL_ID,
|
53 |
+
torch_dtype=torch_dtype,
|
54 |
+
low_cpu_mem_usage=True,
|
55 |
+
use_safetensors=True,
|
56 |
+
attn_implementation="sdpa",
|
57 |
+
)
|
58 |
+
model.to(device)
|
59 |
+
except Exception as e:
|
60 |
+
logger.error(f"Error loading ASR model: {e}")
|
61 |
+
logger.error(f"Are you providing a valid model ID? {MODEL_ID}")
|
62 |
+
raise
|
63 |
+
|
64 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
65 |
+
|
66 |
+
transcribe_pipeline = pipeline(
|
67 |
+
task="automatic-speech-recognition",
|
68 |
+
model=model,
|
69 |
+
tokenizer=processor.tokenizer,
|
70 |
+
feature_extractor=processor.feature_extractor,
|
71 |
+
torch_dtype=torch_dtype
|
72 |
+
)
|
73 |
+
|
74 |
+
# Try to compile the model
|
75 |
+
try:
|
76 |
+
if try_compile_model:
|
77 |
+
transcribe_pipeline.model = torch.compile(transcribe_pipeline.model, mode="max-autotune")
|
78 |
+
else:
|
79 |
+
logger.warning("Proceeding without compiling the model (requirements not met)")
|
80 |
+
except Exception as e:
|
81 |
+
logger.warning(f"Error compiling model: {e}")
|
82 |
+
logger.warning("Proceeding without compiling the model")
|
83 |
+
|
84 |
+
# Warm up the model with empty audio
|
85 |
+
logger.info("Warming up Whisper model with dummy input")
|
86 |
+
warmup_audio = np.random.rand(16000).astype(np_dtype)
|
87 |
+
transcribe_pipeline(warmup_audio)
|
88 |
+
logger.info("Model warmup complete")
|