Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,35 +13,47 @@ from PIL import Image
|
|
13 |
import warnings
|
14 |
warnings.filterwarnings('ignore')
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
network_url = hf_hub_url(repo_id="opetrova/face-frontalization", filename="network.py")
|
20 |
r = requests.get(network_url, allow_redirects=True)
|
21 |
open('network.py', 'wb').write(r.content)
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
def frontalize(image):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
input_tensor = torch.unsqueeze(preprocess(image), 0)
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
generated_image = saved_model(Variable(input_tensor.type('torch.FloatTensor')))
|
37 |
generated_image = generated_image.detach().squeeze().permute(1, 2, 0).numpy()
|
38 |
-
generated_image = (generated_image + 1.0) / 2.0
|
39 |
-
|
40 |
return generated_image
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
)
|
47 |
-
|
|
|
|
13 |
import warnings
|
14 |
warnings.filterwarnings('ignore')
|
15 |
|
16 |
+
# モデルのダウンロード
|
17 |
+
path_to_model = hf_hub_download(
|
18 |
+
repo_id="opetrova/face-frontalization",
|
19 |
+
filename="generator_v0.pt"
|
20 |
+
)
|
21 |
|
22 |
+
# network.py をカレントディレクトリにダウンロード
|
23 |
network_url = hf_hub_url(repo_id="opetrova/face-frontalization", filename="network.py")
|
24 |
r = requests.get(network_url, allow_redirects=True)
|
25 |
open('network.py', 'wb').write(r.content)
|
26 |
|
27 |
+
# PyTorch 2.6 以降は weights_only=False を指定しないとエラーになる
|
28 |
+
saved_model = torch.load(path_to_model, map_location=torch.device("cpu"), weights_only=False)
|
29 |
|
30 |
def frontalize(image):
|
31 |
+
# 画像を [1, 3, 128, 128] tensor に変換
|
32 |
+
preprocess = transforms.Compose((
|
33 |
+
transforms.ToPILImage(),
|
34 |
+
transforms.Resize(size=(128, 128)),
|
35 |
+
transforms.ToTensor(),
|
36 |
+
))
|
37 |
input_tensor = torch.unsqueeze(preprocess(image), 0)
|
38 |
+
|
39 |
+
# 推論
|
40 |
+
generated_image = saved_model(Variable(input_tensor.type(torch.FloatTensor)))
|
|
|
41 |
generated_image = generated_image.detach().squeeze().permute(1, 2, 0).numpy()
|
42 |
+
generated_image = (generated_image + 1.0) / 2.0 # [-1,1] → [0,1]
|
43 |
+
|
44 |
return generated_image
|
45 |
|
46 |
+
# Gradio インターフェース
|
47 |
+
iface = gr.Interface(
|
48 |
+
fn=frontalize,
|
49 |
+
inputs=gr.Image(type="numpy"),
|
50 |
+
outputs="image",
|
51 |
+
title="Face Frontalization",
|
52 |
+
description=(
|
53 |
+
'PyTorch implementation of a supervised GAN '
|
54 |
+
'(see <a href="https://blog.scaleway.com/gpu-instances-using-deep-learning-to-obtain-frontal-rendering-of-facial-images/">blog post</a>)'
|
55 |
+
),
|
56 |
+
examples=["amos.png", "clarissa.png"],
|
57 |
)
|
58 |
+
|
59 |
+
iface.launch()
|