Spaces:
Runtime error
Runtime error
Commit
·
713e80d
1
Parent(s):
afeb010
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import librosa
|
| 3 |
+
from transformers import AutoFeatureExtractor, pipeline
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def load_and_fix_data(input_file, model_sampling_rate):
|
| 7 |
+
speech, sample_rate = librosa.load(input_file)
|
| 8 |
+
if len(speech.shape) > 1:
|
| 9 |
+
speech = speech[:, 0] + speech[:, 1]
|
| 10 |
+
if sample_rate != model_sampling_rate:
|
| 11 |
+
speech = librosa.resample(speech, sample_rate, model_sampling_rate)
|
| 12 |
+
return speech
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
| 16 |
+
"anuragshas/wav2vec2-xls-r-1b-hi-with-lm"
|
| 17 |
+
)
|
| 18 |
+
sampling_rate = feature_extractor.sampling_rate
|
| 19 |
+
|
| 20 |
+
asr = pipeline(
|
| 21 |
+
"automatic-speech-recognition", model="anuragshas/wav2vec2-xls-r-1b-hi-with-lm"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def predict_and_ctc_lm_decode(input_file):
|
| 26 |
+
speech = load_and_fix_data(input_file, sampling_rate)
|
| 27 |
+
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)
|
| 28 |
+
return transcribed_text["text"]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
gr.Interface(
|
| 32 |
+
predict_and_ctc_lm_decode,
|
| 33 |
+
inputs=[
|
| 34 |
+
gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")
|
| 35 |
+
],
|
| 36 |
+
outputs=[gr.outputs.Textbox()],
|
| 37 |
+
examples=[["example1.wav"]],
|
| 38 |
+
title="Hindi ASR using Wav2Vec2-1B with LM",
|
| 39 |
+
description="Built during Robust Speech Event",
|
| 40 |
+
layout="horizontal",
|
| 41 |
+
theme="huggingface",
|
| 42 |
+
).launch(enable_queue=True)
|