Spaces:
Running
Running
| import argparse | |
| import copy | |
| import os | |
| import os.path as osp | |
| import time | |
| import mmcv | |
| import torch | |
| from mmcv import Config, DictAction | |
| from mmcv.runner import get_dist_info, init_dist, set_random_seed | |
| from mmcv.utils import get_git_hash | |
| from models import * # noqa | |
| from models.apis import train_model | |
| from models.datasets import build_dataset | |
| from mmpose import __version__ | |
| from mmpose.models import build_posenet | |
| from mmpose.utils import collect_env, get_root_logger | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description='Train a pose model') | |
| parser.add_argument('--config', default=None, help='train config file path') | |
| parser.add_argument('--work-dir', default=None, help='the dir to save logs and models') | |
| parser.add_argument( | |
| '--resume-from', help='the checkpoint file to resume from') | |
| parser.add_argument( | |
| '--auto-resume', type=bool, default=True, help='automatically detect the latest checkpoint in word dir and resume from it.') | |
| parser.add_argument( | |
| '--no-validate', | |
| action='store_true', | |
| help='whether not to evaluate the checkpoint during training') | |
| group_gpus = parser.add_mutually_exclusive_group() | |
| group_gpus.add_argument( | |
| '--gpus', | |
| type=int, | |
| help='number of gpus to use ' | |
| '(only applicable to non-distributed training)') | |
| group_gpus.add_argument( | |
| '--gpu-ids', | |
| type=int, | |
| nargs='+', | |
| help='ids of gpus to use ' | |
| '(only applicable to non-distributed training)') | |
| parser.add_argument('--seed', type=int, default=None, help='random seed') | |
| parser.add_argument( | |
| '--deterministic', | |
| action='store_true', | |
| help='whether to set deterministic options for CUDNN backend.') | |
| parser.add_argument( | |
| '--cfg-options', | |
| nargs='+', | |
| action=DictAction, | |
| default={}, | |
| help='override some settings in the used config, the key-value pair ' | |
| 'in xxx=yyy format will be merged into config file. For example, ' | |
| "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") | |
| parser.add_argument( | |
| '--launcher', | |
| choices=['none', 'pytorch', 'slurm', 'mpi'], | |
| default='none', | |
| help='job launcher') | |
| parser.add_argument('--local_rank', type=int, default=0) | |
| parser.add_argument( | |
| '--autoscale-lr', | |
| action='store_true', | |
| help='automatically scale lr with the number of gpus') | |
| parser.add_argument( | |
| '--show', | |
| action='store_true', | |
| help='whether to display the prediction results in a window.') | |
| args = parser.parse_args() | |
| if 'LOCAL_RANK' not in os.environ: | |
| os.environ['LOCAL_RANK'] = str(args.local_rank) | |
| return args | |
| def main(): | |
| args = parse_args() | |
| cfg = Config.fromfile(args.config) | |
| if args.cfg_options is not None: | |
| cfg.merge_from_dict(args.cfg_options) | |
| # set cudnn_benchmark | |
| if cfg.get('cudnn_benchmark', False): | |
| torch.backends.cudnn.benchmark = True | |
| # work_dir is determined in this priority: CLI | |
| # > segment in file > filename | |
| if args.work_dir is not None: | |
| # update configs according to CLI args if args.work_dir is not None | |
| cfg.work_dir = args.work_dir | |
| elif cfg.get('work_dir', None) is None: | |
| # use config filename as default work_dir if cfg.work_dir is None | |
| cfg.work_dir = osp.join('./work_dirs', | |
| osp.splitext(osp.basename(args.config))[0]) | |
| # auto resume | |
| if args.auto_resume: | |
| checkpoint = os.path.join(args.work_dir, 'latest.pth') | |
| if os.path.exists(checkpoint): | |
| cfg.resume_from = checkpoint | |
| if args.resume_from is not None: | |
| cfg.resume_from = args.resume_from | |
| if args.gpu_ids is not None: | |
| cfg.gpu_ids = args.gpu_ids | |
| else: | |
| cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) | |
| if args.autoscale_lr: | |
| # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) | |
| cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 | |
| # init distributed env first, since logger depends on the dist info. | |
| if args.launcher == 'none': | |
| distributed = False | |
| else: | |
| distributed = True | |
| init_dist(args.launcher, **cfg.dist_params) | |
| # re-set gpu_ids with distributed training mode | |
| _, world_size = get_dist_info() | |
| cfg.gpu_ids = range(world_size) | |
| # create work_dir | |
| mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) | |
| # init the logger before other steps | |
| timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) | |
| log_file = osp.join(cfg.work_dir, f'{timestamp}.log') | |
| logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) | |
| # init the meta dict to record some important information such as | |
| # environment info and seed, which will be logged | |
| meta = dict() | |
| # log env info | |
| env_info_dict = collect_env() | |
| env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) | |
| dash_line = '-' * 60 + '\n' | |
| logger.info('Environment info:\n' + dash_line + env_info + '\n' + | |
| dash_line) | |
| meta['env_info'] = env_info | |
| # log some basic info | |
| logger.info(f'Distributed training: {distributed}') | |
| logger.info(f'Config:\n{cfg.pretty_text}') | |
| # set random seeds | |
| args.seed = 1 | |
| args.deterministic = True | |
| if args.seed is not None: | |
| logger.info(f'Set random seed to {args.seed}, ' | |
| f'deterministic: {args.deterministic}') | |
| set_random_seed(args.seed, deterministic=args.deterministic) | |
| cfg.seed = args.seed | |
| meta['seed'] = args.seed | |
| model = build_posenet(cfg.model) | |
| train_datasets = [build_dataset(cfg.data.train)] | |
| # if len(cfg.workflow) == 2: | |
| # val_dataset = copy.deepcopy(cfg.data.val) | |
| # val_dataset.pipeline = cfg.data.train.pipeline | |
| # datasets.append(build_dataset(val_dataset)) | |
| val_dataset = copy.deepcopy(cfg.data.val) | |
| val_dataset = build_dataset(val_dataset, dict(test_mode=True)) | |
| if cfg.checkpoint_config is not None: | |
| # save mmpose version, config file content | |
| # checkpoints as meta data | |
| cfg.checkpoint_config.meta = dict( | |
| mmpose_version=__version__ + get_git_hash(digits=7), | |
| config=cfg.pretty_text, | |
| ) | |
| train_model( | |
| model, | |
| train_datasets, | |
| val_dataset, | |
| cfg, | |
| distributed=distributed, | |
| validate=(not args.no_validate), | |
| timestamp=timestamp, | |
| meta=meta) | |
| if __name__ == '__main__': | |
| main() | |