Spaces:
Runtime error
Runtime error
Victoria Slocum
commited on
Commit
·
db85c2c
1
Parent(s):
c498800
prettier?
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del
|
|
16 |
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
|
17 |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
|
18 |
|
|
|
19 |
def get_all_models():
|
20 |
with open("requirements.txt") as f:
|
21 |
content = f.readlines()
|
@@ -35,7 +36,7 @@ def dependency(text, col_punct, col_phrase, compact, bg, font, model):
|
|
35 |
nlp = spacy.load(model + "_sm")
|
36 |
doc = nlp(text)
|
37 |
options = {"compact": compact, "collapse_phrases": col_phrase,
|
38 |
-
"collapse_punct": col_punct, "bg": bg, "color":font}
|
39 |
html = displacy.render(doc, style="dep", options=options)
|
40 |
return html
|
41 |
|
@@ -60,6 +61,7 @@ def token(text, attributes, model):
|
|
60 |
data = pd.DataFrame(data, columns=attributes)
|
61 |
return data
|
62 |
|
|
|
63 |
def default_token(text, attributes, model):
|
64 |
nlp = spacy.load(model + "_sm")
|
65 |
data = []
|
@@ -154,8 +156,7 @@ with demo:
|
|
154 |
gr.Markdown("")
|
155 |
with gr.Column():
|
156 |
gr.Markdown("")
|
157 |
-
|
158 |
-
|
159 |
with gr.Row():
|
160 |
with gr.Column():
|
161 |
text_input = gr.Textbox(
|
@@ -163,89 +164,161 @@ with demo:
|
|
163 |
with gr.Column():
|
164 |
gr.Markdown("")
|
165 |
button = gr.Button("Generate", variant="primary")
|
166 |
-
with gr.Column():
|
167 |
with gr.Tabs():
|
168 |
with gr.TabItem(""):
|
169 |
with gr.Column():
|
170 |
-
gr.Markdown(
|
|
|
|
|
|
|
171 |
with gr.Row():
|
172 |
with gr.Column():
|
173 |
gr.Markdown("""```python
|
174 |
import spacy
|
175 |
from spacy import displacy
|
176 |
|
|
|
|
|
177 |
displacy.serve(doc, style="dep")
|
178 |
```
|
179 |
""")
|
180 |
-
|
181 |
with gr.Column():
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
compact = gr.Checkbox(label="Compact", value=False)
|
185 |
with gr.Column():
|
186 |
-
bg = gr.Textbox(
|
|
|
187 |
with gr.Column():
|
188 |
-
text = gr.Textbox(
|
189 |
-
|
|
|
|
|
190 |
dep_button = gr.Button("Generate Dependency Parser")
|
191 |
gr.Markdown("\n\n\n")
|
192 |
with gr.Box():
|
193 |
with gr.Column():
|
194 |
-
gr.Markdown(
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
198 |
import spacy
|
199 |
from spacy import displacy
|
200 |
-
|
|
|
|
|
201 |
displacy.serve(doc, style="ent")
|
202 |
```
|
203 |
""")
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
entity_input = gr.CheckboxGroup(
|
209 |
-
|
|
|
|
|
210 |
ent_button = gr.Button("Generate Entity Recognizer")
|
211 |
with gr.Box():
|
212 |
with gr.Column():
|
213 |
-
gr.Markdown(
|
|
|
|
|
214 |
with gr.Column():
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
218 |
tok_button = gr.Button("Generate Token Properties")
|
219 |
with gr.Box():
|
220 |
with gr.Column():
|
221 |
-
gr.Markdown(
|
|
|
|
|
|
|
222 |
with gr.Row():
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
sim_random_button = gr.Button("Generate random words")
|
229 |
sim_button = gr.Button("Generate similarity")
|
230 |
with gr.Box():
|
231 |
with gr.Column():
|
232 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
with gr.Column():
|
234 |
with gr.Row():
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
with gr.Row():
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
gr.Markdown(value="\n\n\n\n")
|
246 |
gr.Markdown(value="\n\n\n\n")
|
247 |
span_button = gr.Button("Generate spans")
|
248 |
-
|
249 |
text_button.click(get_text, inputs=[model_input], outputs=text_input)
|
250 |
button.click(dependency, inputs=[
|
251 |
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=depen_output)
|
|
|
16 |
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
|
17 |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
|
18 |
|
19 |
+
|
20 |
def get_all_models():
|
21 |
with open("requirements.txt") as f:
|
22 |
content = f.readlines()
|
|
|
36 |
nlp = spacy.load(model + "_sm")
|
37 |
doc = nlp(text)
|
38 |
options = {"compact": compact, "collapse_phrases": col_phrase,
|
39 |
+
"collapse_punct": col_punct, "bg": bg, "color": font}
|
40 |
html = displacy.render(doc, style="dep", options=options)
|
41 |
return html
|
42 |
|
|
|
61 |
data = pd.DataFrame(data, columns=attributes)
|
62 |
return data
|
63 |
|
64 |
+
|
65 |
def default_token(text, attributes, model):
|
66 |
nlp = spacy.load(model + "_sm")
|
67 |
data = []
|
|
|
156 |
gr.Markdown("")
|
157 |
with gr.Column():
|
158 |
gr.Markdown("")
|
159 |
+
|
|
|
160 |
with gr.Row():
|
161 |
with gr.Column():
|
162 |
text_input = gr.Textbox(
|
|
|
164 |
with gr.Column():
|
165 |
gr.Markdown("")
|
166 |
button = gr.Button("Generate", variant="primary")
|
167 |
+
with gr.Column():
|
168 |
with gr.Tabs():
|
169 |
with gr.TabItem(""):
|
170 |
with gr.Column():
|
171 |
+
gr.Markdown(
|
172 |
+
"## [Dependency Parser](https://spacy.io/usage/visualizers#dep)")
|
173 |
+
gr.Markdown(
|
174 |
+
"The dependency visualizer, `dep`, shows part-of-speech tags and syntactic dependencies.")
|
175 |
with gr.Row():
|
176 |
with gr.Column():
|
177 |
gr.Markdown("""```python
|
178 |
import spacy
|
179 |
from spacy import displacy
|
180 |
|
181 |
+
nlp = spacy.load("en_core_web_sm")
|
182 |
+
doc = nlp(text)
|
183 |
displacy.serve(doc, style="dep")
|
184 |
```
|
185 |
""")
|
|
|
186 |
with gr.Column():
|
187 |
+
gr.Markdown("")
|
188 |
+
with gr.Column():
|
189 |
+
gr.Markdown("")
|
190 |
+
with gr.Row():
|
191 |
+
with gr.Column():
|
192 |
+
col_punct = gr.Checkbox(
|
193 |
+
label="Collapse Punctuation", value=True)
|
194 |
+
col_phrase = gr.Checkbox(
|
195 |
+
label="Collapse Phrases", value=True)
|
196 |
compact = gr.Checkbox(label="Compact", value=False)
|
197 |
with gr.Column():
|
198 |
+
bg = gr.Textbox(
|
199 |
+
label="Background Color", value=DEFAULT_COLOR)
|
200 |
with gr.Column():
|
201 |
+
text = gr.Textbox(
|
202 |
+
label="Text Color", value="black")
|
203 |
+
depen_output = gr.HTML(value=dependency(
|
204 |
+
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL))
|
205 |
dep_button = gr.Button("Generate Dependency Parser")
|
206 |
gr.Markdown("\n\n\n")
|
207 |
with gr.Box():
|
208 |
with gr.Column():
|
209 |
+
gr.Markdown(
|
210 |
+
"## [Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
|
211 |
+
gr.Markdown(
|
212 |
+
"The entity visualizer, `ent`, highlights named entities and their labels in a text.")
|
213 |
+
with gr.Row():
|
214 |
+
with gr.Column():
|
215 |
+
gr.Markdown("""```python
|
216 |
import spacy
|
217 |
from spacy import displacy
|
218 |
+
|
219 |
+
nlp = spacy.load("en_core_web_sm")
|
220 |
+
doc = nlp(text)
|
221 |
displacy.serve(doc, style="ent")
|
222 |
```
|
223 |
""")
|
224 |
+
with gr.Column():
|
225 |
+
gr.Markdown("")
|
226 |
+
with gr.Column():
|
227 |
+
gr.Markdown("")
|
228 |
+
entity_input = gr.CheckboxGroup(
|
229 |
+
DEFAULT_ENTS, value=DEFAULT_ENTS)
|
230 |
+
entity_output = gr.HTML(value=entity(
|
231 |
+
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL))
|
232 |
ent_button = gr.Button("Generate Entity Recognizer")
|
233 |
with gr.Box():
|
234 |
with gr.Column():
|
235 |
+
gr.Markdown(
|
236 |
+
"## [Token Properties](https://spacy.io/usage/linguistic-features)")
|
237 |
+
gr.Markdown("When you put in raw text to spaCy, it returns a `Doc` object with different linguistic features")
|
238 |
with gr.Column():
|
239 |
+
with gr.Row():
|
240 |
+
with gr.Column():
|
241 |
+
tok_input = gr.CheckboxGroup(
|
242 |
+
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR)
|
243 |
+
with gr.Column():
|
244 |
+
gr.Markdown("")
|
245 |
+
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
|
246 |
+
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL), overflow_row_behaviour="paginate")
|
247 |
tok_button = gr.Button("Generate Token Properties")
|
248 |
with gr.Box():
|
249 |
with gr.Column():
|
250 |
+
gr.Markdown(
|
251 |
+
"## [Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
|
252 |
+
gr.Markdown("Words and spans have similarity ratings based off of their word vectors, or word embeddings")
|
253 |
+
gr.Markdown(">Word embeddings are multi-dimensional meaning representations of a word.")
|
254 |
with gr.Row():
|
255 |
+
with gr.Column():
|
256 |
+
sim_text1 = gr.Textbox(
|
257 |
+
value="Apple", label="Word 1", interactive=True,)
|
258 |
+
with gr.Column():
|
259 |
+
sim_text2 = gr.Textbox(
|
260 |
+
value="U.K. startup", label="Word 2", interactive=True,)
|
261 |
+
with gr.Column():
|
262 |
+
sim_output = gr.Textbox(
|
263 |
+
label="Similarity Score", value="0.12")
|
264 |
+
with gr.Column():
|
265 |
+
gr.Markdown("")
|
266 |
sim_random_button = gr.Button("Generate random words")
|
267 |
sim_button = gr.Button("Generate similarity")
|
268 |
with gr.Box():
|
269 |
with gr.Column():
|
270 |
+
gr.Markdown(
|
271 |
+
"## [Spans](https://spacy.io/usage/visualizers#span)")
|
272 |
+
gr.Markdown("The span visualizer, `span`, highlights overlapping spans in a text.")
|
273 |
+
with gr.Row():
|
274 |
+
with gr.Column():
|
275 |
+
gr.Markdown("""```python
|
276 |
+
import spacy
|
277 |
+
from spacy import displacy
|
278 |
+
from spacy.tokens import Span
|
279 |
+
|
280 |
+
nlp = spacy.load("en_core_web_sm")
|
281 |
+
doc = nlp(text)
|
282 |
+
doc.spans["sc"] = [
|
283 |
+
Span(doc, 6, 8, "ORG")
|
284 |
+
Span(doc, 6, 7, "GPE")
|
285 |
+
]
|
286 |
+
displacy.serve(doc, style="span")
|
287 |
+
```
|
288 |
+
""")
|
289 |
+
with gr.Column():
|
290 |
+
gr.Markdown("")
|
291 |
+
with gr.Column():
|
292 |
+
gr.Markdown("")
|
293 |
with gr.Column():
|
294 |
with gr.Row():
|
295 |
+
with gr.Column():
|
296 |
+
span1 = gr.Textbox(
|
297 |
+
label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence")
|
298 |
+
with gr.Column():
|
299 |
+
label1 = gr.Textbox(value="ORG",
|
300 |
+
label="Label for Span 1")
|
301 |
+
with gr.Column():
|
302 |
+
gr.Markdown("")
|
303 |
+
with gr.Column():
|
304 |
+
gr.Markdown("")
|
305 |
with gr.Row():
|
306 |
+
with gr.Column():
|
307 |
+
span2 = gr.Textbox(
|
308 |
+
label="Span 2", value="U.K.", placeholder="Input another part of the sentence")
|
309 |
+
with gr.Column():
|
310 |
+
label2 = gr.Textbox(value="GPE",
|
311 |
+
label="Label for Span 2")
|
312 |
+
with gr.Column():
|
313 |
+
gr.Markdown("")
|
314 |
+
with gr.Column():
|
315 |
+
gr.Markdown("")
|
316 |
+
span_output = gr.HTML(value=span(
|
317 |
+
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL))
|
318 |
gr.Markdown(value="\n\n\n\n")
|
319 |
gr.Markdown(value="\n\n\n\n")
|
320 |
span_button = gr.Button("Generate spans")
|
321 |
+
|
322 |
text_button.click(get_text, inputs=[model_input], outputs=text_input)
|
323 |
button.click(dependency, inputs=[
|
324 |
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=depen_output)
|