Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
from llama_cpp import Llama
|
6 |
+
from torchvision.models import vgg16
|
7 |
+
|
8 |
+
# Load your gguf model (LLaMA or similar)
|
9 |
+
llm = Llama(model_path="path/to/ggml-model-IQ3_M.gguf")
|
10 |
+
|
11 |
+
# Load a pre-trained image recognition model (VGG16 in this case)
|
12 |
+
vgg_model = vgg16(pretrained=True).eval()
|
13 |
+
|
14 |
+
# Image transformation pipeline
|
15 |
+
transform = transforms.Compose([
|
16 |
+
transforms.Resize((224, 224)),
|
17 |
+
transforms.ToTensor(),
|
18 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
19 |
+
])
|
20 |
+
|
21 |
+
# Function to process the image and extract features
|
22 |
+
def process_image(image):
|
23 |
+
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
|
24 |
+
with torch.no_grad():
|
25 |
+
image_features = vgg_model(image_tensor).flatten().tolist() # Flatten feature map
|
26 |
+
return image_features
|
27 |
+
|
28 |
+
# Function to combine the image features with the question and get a chatbot response
|
29 |
+
def chatbot(image, question):
|
30 |
+
# Process the image to extract features
|
31 |
+
image_features = process_image(image)
|
32 |
+
|
33 |
+
# Create a prompt combining the question and image features
|
34 |
+
prompt = f"Image features: {image_features}\nQuestion: {question}\nAnswer:"
|
35 |
+
|
36 |
+
# Generate response using the gguf model
|
37 |
+
response = llm(prompt=prompt, max_tokens=128)
|
38 |
+
|
39 |
+
# Return the chatbot's response
|
40 |
+
return response["choices"][0]["text"].strip()
|
41 |
+
|
42 |
+
# Gradio interface
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=chatbot,
|
45 |
+
inputs=[
|
46 |
+
gr.inputs.Image(type="pil"), # Image input
|
47 |
+
gr.inputs.Textbox(lines=2, placeholder="Ask something about the image...") # Text input
|
48 |
+
],
|
49 |
+
outputs="text", # Text output
|
50 |
+
title="Image to Text Chatbot",
|
51 |
+
description="Upload an image and ask a question to the chatbot. It will try to answer based on the image and your question."
|
52 |
+
)
|
53 |
+
|
54 |
+
# Launch the Gradio app
|
55 |
+
iface.launch()
|