Spaces:
Running
on
L4
Running
on
L4
# -------------------------------------------------------- | |
# Adapted from: https://github.com/openai/point-e | |
# Licensed under the MIT License | |
# Copyright (c) 2022 OpenAI | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# -------------------------------------------------------- | |
import math | |
from typing import Any, Dict, Iterable, Optional, Sequence, Union | |
import numpy as np | |
import torch as th | |
def sigmoid_schedule(t, start=-3, end=3, tau=0.6, clip_min=1e-9): | |
def sigmoid(x): | |
return 1 / (1 + np.exp(-x)) | |
v_start = sigmoid(start / tau) | |
v_end = sigmoid(end / tau) | |
output = sigmoid((t * (end - start) + start) / tau) | |
output = (v_end - output) / (v_end - v_start) | |
return np.clip(output, clip_min, 1.0) | |
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps): | |
""" | |
This is the deprecated API for creating beta schedules. | |
See get_named_beta_schedule() for the new library of schedules. | |
""" | |
if beta_schedule == "linear": | |
betas = np.linspace( | |
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 | |
) | |
else: | |
raise NotImplementedError(beta_schedule) | |
assert betas.shape == (num_diffusion_timesteps,) | |
return betas | |
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, exp_p=12): | |
""" | |
Get a pre-defined beta schedule for the given name. | |
The beta schedule library consists of beta schedules which remain similar | |
in the limit of num_diffusion_timesteps. | |
Beta schedules may be added, but should not be removed or changed once | |
they are committed to maintain backwards compatibility. | |
""" | |
if schedule_name == "linear": | |
# Linear schedule from Ho et al, extended to work for any number of | |
# diffusion steps. | |
scale = 1000 / num_diffusion_timesteps | |
return get_beta_schedule( | |
"linear", | |
beta_start=scale * 0.0001, | |
beta_end=scale * 0.02, | |
num_diffusion_timesteps=num_diffusion_timesteps, | |
) | |
elif schedule_name == "cosine": | |
return betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
) | |
elif schedule_name == "sigmoid": | |
# Sigmoid schedule passed through betas_for_alpha_bar | |
return betas_for_alpha_bar( | |
num_diffusion_timesteps, lambda t: sigmoid_schedule(t) | |
) | |
else: | |
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |
def space_timesteps(num_timesteps, section_counts): | |
""" | |
Create a list of timesteps to use from an original diffusion process, | |
given the number of timesteps we want to take from equally-sized portions | |
of the original process. | |
For example, if there's 300 timesteps and the section counts are [10,15,20] | |
then the first 100 timesteps are strided to be 10 timesteps, the second 100 | |
are strided to be 15 timesteps, and the final 100 are strided to be 20. | |
:param num_timesteps: the number of diffusion steps in the original | |
process to divide up. | |
:param section_counts: either a list of numbers, or a string containing | |
comma-separated numbers, indicating the step count | |
per section. As a special case, use "ddimN" where N | |
is a number of steps to use the striding from the | |
DDIM paper. | |
:return: a set of diffusion steps from the original process to use. | |
""" | |
if isinstance(section_counts, str): | |
if section_counts.startswith("ddim"): | |
desired_count = int(section_counts[len("ddim") :]) | |
for i in range(1, num_timesteps): | |
if len(range(0, num_timesteps, i)) == desired_count: | |
return set(range(0, num_timesteps, i)) | |
raise ValueError( | |
f"cannot create exactly {num_timesteps} steps with an integer stride" | |
) | |
elif section_counts.startswith("exact"): | |
res = set(int(x) for x in section_counts[len("exact") :].split(",")) | |
for x in res: | |
if x < 0 or x >= num_timesteps: | |
raise ValueError(f"timestep out of bounds: {x}") | |
return res | |
section_counts = [int(x) for x in section_counts.split(",")] | |
size_per = num_timesteps // len(section_counts) | |
extra = num_timesteps % len(section_counts) | |
start_idx = 0 | |
all_steps = [] | |
for i, section_count in enumerate(section_counts): | |
size = size_per + (1 if i < extra else 0) | |
if size < section_count: | |
raise ValueError( | |
f"cannot divide section of {size} steps into {section_count}" | |
) | |
if section_count <= 1: | |
frac_stride = 1 | |
else: | |
frac_stride = (size - 1) / (section_count - 1) | |
cur_idx = 0.0 | |
taken_steps = [] | |
for _ in range(section_count): | |
taken_steps.append(start_idx + round(cur_idx)) | |
cur_idx += frac_stride | |
all_steps += taken_steps | |
start_idx += size | |
return set(all_steps) | |
def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
"""Extract values from a 1-D numpy array for a batch of indices.""" | |
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
while len(res.shape) < len(broadcast_shape): | |
res = res[..., None] | |
return res + th.zeros(broadcast_shape, device=timesteps.device) | |
class GaussianDiffusion: | |
""" | |
Utilities for sampling from Gaussian diffusion models. | |
""" | |
def __init__( | |
self, | |
*, | |
betas: Sequence[float], | |
model_mean_type: str, | |
model_var_type: str, | |
channel_scales: Optional[np.ndarray] = None, | |
channel_biases: Optional[np.ndarray] = None, | |
): | |
self.model_mean_type = model_mean_type | |
self.model_var_type = model_var_type | |
self.channel_scales = channel_scales | |
self.channel_biases = channel_biases | |
# Use float64 for accuracy | |
betas = np.array(betas, dtype=np.float64) | |
self.betas = betas | |
assert len(betas.shape) == 1, "betas must be 1-D" | |
assert (betas > 0).all() and (betas <= 1).all() | |
self.num_timesteps = int(betas.shape[0]) | |
alphas = 1.0 - betas | |
self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
self.posterior_variance = ( | |
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.posterior_log_variance_clipped = np.log( | |
np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
) | |
self.posterior_mean_coef1 = ( | |
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
) | |
self.posterior_mean_coef2 = ( | |
(1.0 - self.alphas_cumprod_prev) | |
* np.sqrt(alphas) | |
/ (1.0 - self.alphas_cumprod) | |
) | |
def scale_channels(self, x: th.Tensor) -> th.Tensor: | |
"""Apply channel-wise scaling.""" | |
if self.channel_scales is not None: | |
x = x * th.from_numpy(self.channel_scales).to(x).reshape( | |
[1, -1, *([1] * (len(x.shape) - 2))] | |
) | |
if self.channel_biases is not None: | |
x = x + th.from_numpy(self.channel_biases).to(x).reshape( | |
[1, -1, *([1] * (len(x.shape) - 2))] | |
) | |
return x | |
def unscale_channels(self, x: th.Tensor) -> th.Tensor: | |
"""Remove channel-wise scaling.""" | |
if self.channel_biases is not None: | |
x = x - th.from_numpy(self.channel_biases).to(x).reshape( | |
[1, -1, *([1] * (len(x.shape) - 2))] | |
) | |
if self.channel_scales is not None: | |
x = x / th.from_numpy(self.channel_scales).to(x).reshape( | |
[1, -1, *([1] * (len(x.shape) - 2))] | |
) | |
return x | |
def unscale_out_dict( | |
self, out: Dict[str, Union[th.Tensor, Any]] | |
) -> Dict[str, Union[th.Tensor, Any]]: | |
return { | |
k: (self.unscale_channels(v) if isinstance(v, th.Tensor) else v) | |
for k, v in out.items() | |
} | |
def q_posterior_mean_variance(self, x_start, x_t, t): | |
""" | |
Compute the mean and variance of the diffusion posterior: | |
q(x_{t-1} | x_t, x_0) | |
""" | |
assert x_start.shape == x_t.shape | |
posterior_mean = ( | |
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = _extract_into_tensor( | |
self.posterior_log_variance_clipped, t, x_t.shape | |
) | |
assert ( | |
posterior_mean.shape[0] | |
== posterior_variance.shape[0] | |
== posterior_log_variance_clipped.shape[0] | |
== x_start.shape[0] | |
) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance( | |
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None | |
): | |
""" | |
Apply the model to get p(x_{t-1} | x_t). | |
""" | |
if model_kwargs is None: | |
model_kwargs = {} | |
B, C = x.shape[:2] | |
assert t.shape == (B,) | |
# Direct prediction of eps | |
model_output = model(x, t, **model_kwargs) | |
if isinstance(model_output, tuple): | |
model_output, prev_latent = model_output | |
model_kwargs["prev_latent"] = prev_latent | |
# Convert model output to mean and variance | |
model_variance, model_log_variance = { | |
# for fixedlarge, we set the initial (log-)variance like so | |
# to get a better decoder log likelihood. | |
"fixed_large": ( | |
np.append(self.posterior_variance[1], self.betas[1:]), | |
np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
), | |
"fixed_small": ( | |
self.posterior_variance, | |
self.posterior_log_variance_clipped, | |
), | |
}[self.model_var_type] | |
model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) | |
def process_xstart(x): | |
if denoised_fn is not None: | |
x = denoised_fn(x) | |
if clip_denoised: | |
x = x.clamp( | |
-self.channel_scales[0] * 0.67, self.channel_scales[0] * 0.67 | |
) | |
x[:, 3:] = x[:, 3:].clamp( | |
-self.channel_scales[3] * 0.5, self.channel_scales[3] * 0.5 | |
) | |
return x | |
return x | |
if self.model_mean_type == "x_prev": | |
pred_xstart = process_xstart( | |
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) | |
) | |
model_mean = model_output | |
elif self.model_mean_type in ["x_start", "epsilon"]: | |
if self.model_mean_type == "x_start": | |
pred_xstart = process_xstart(model_output) | |
else: | |
pred_xstart = process_xstart( | |
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) | |
) | |
model_mean, _, _ = self.q_posterior_mean_variance( | |
x_start=pred_xstart, x_t=x, t=t | |
) | |
# print('p_mean_variance:', pred_xstart.min(), pred_xstart.max()) | |
else: | |
raise NotImplementedError(self.model_mean_type) | |
assert ( | |
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape | |
) | |
return { | |
"mean": model_mean, | |
"variance": model_variance, | |
"log_variance": model_log_variance, | |
"pred_xstart": pred_xstart, | |
} | |
def _predict_xstart_from_eps(self, x_t, t, eps): | |
assert x_t.shape == eps.shape | |
return ( | |
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
) | |
def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
assert x_t.shape == xprev.shape | |
return ( # (xprev - coef2*x_t) / coef1 | |
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev | |
- _extract_into_tensor( | |
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape | |
) | |
* x_t | |
) | |
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
return ( | |
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
- pred_xstart | |
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
def ddim_sample_loop_progressive( | |
self, | |
model, | |
shape, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
eta=0.0, | |
): | |
""" | |
Use DDIM to sample from the model and yield intermediate samples. | |
""" | |
if device is None: | |
device = next(model.parameters()).device | |
assert isinstance(shape, (tuple, list)) | |
if noise is not None: | |
img = noise | |
else: | |
img = th.randn(*shape, device=device) | |
indices = list(range(self.num_timesteps))[::-1] | |
if progress: | |
from tqdm.auto import tqdm | |
indices = tqdm(indices) | |
for i in indices: | |
t = th.tensor([i] * shape[0], device=device) | |
with th.no_grad(): | |
out = self.ddim_sample( | |
model, | |
img, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
eta=eta, | |
) | |
yield self.unscale_out_dict(out) | |
img = out["sample"] | |
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
return ( | |
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
- pred_xstart | |
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
def ddim_sample( | |
self, | |
model, | |
x, | |
t, | |
clip_denoised=True, | |
denoised_fn=None, | |
model_kwargs=None, | |
eta=0.0, | |
): | |
""" | |
Sample x_{t-1} from the model using DDIM. | |
""" | |
out = self.p_mean_variance( | |
model, | |
x, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
) | |
# Usually our model outputs epsilon, but we re-derive it | |
# in case we used x_start or x_prev prediction. | |
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
sigma = ( | |
eta | |
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) | |
* th.sqrt(1 - alpha_bar / alpha_bar_prev) | |
) | |
# Equation 12. | |
noise = th.randn_like(x) | |
mean_pred = ( | |
out["pred_xstart"] * th.sqrt(alpha_bar_prev) | |
+ th.sqrt(1 - alpha_bar_prev - sigma**2) * eps | |
) | |
nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) | |
sample = mean_pred + nonzero_mask * sigma * noise | |
return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
class SpacedDiffusion(GaussianDiffusion): | |
""" | |
A diffusion process which can skip steps in a base diffusion process. | |
""" | |
def __init__(self, use_timesteps: Iterable[int], **kwargs): | |
self.use_timesteps = set(use_timesteps) | |
self.timestep_map = [] | |
self.original_num_steps = len(kwargs["betas"]) | |
base_diffusion = GaussianDiffusion(**kwargs) | |
last_alpha_cumprod = 1.0 | |
new_betas = [] | |
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): | |
if i in self.use_timesteps: | |
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) | |
last_alpha_cumprod = alpha_cumprod | |
self.timestep_map.append(i) | |
kwargs["betas"] = np.array(new_betas) | |
super().__init__(**kwargs) | |
def p_mean_variance(self, model, *args, **kwargs): | |
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) | |
def _wrap_model(self, model): | |
if isinstance(model, _WrappedModel): | |
return model | |
return _WrappedModel(model, self.timestep_map, self.original_num_steps) | |
class _WrappedModel: | |
"""Helper class to wrap models for SpacedDiffusion.""" | |
def __init__(self, model, timestep_map, original_num_steps): | |
self.model = model | |
self.timestep_map = timestep_map | |
self.original_num_steps = original_num_steps | |
def __call__(self, x, ts, **kwargs): | |
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) | |
new_ts = map_tensor[ts] | |
return self.model(x, new_ts, **kwargs) | |