Spaces:
Running
on
L4
Running
on
L4
from dataclasses import dataclass, field | |
from typing import Any, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from jaxtyping import Float | |
from torch import Tensor | |
from spar3d.models.illumination.reni.env_map import RENIEnvMap | |
from spar3d.models.utils import BaseModule | |
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: | |
assert d6.shape[-1] == 6, "Input tensor must have shape (..., 6)" | |
def proj_u2a(u, a): | |
r""" | |
u: batch x 3 | |
a: batch x 3 | |
""" | |
inner_prod = torch.sum(u * a, dim=-1, keepdim=True) | |
norm2 = torch.sum(u**2, dim=-1, keepdim=True) | |
norm2 = torch.clamp(norm2, min=1e-8) | |
factor = inner_prod / (norm2 + 1e-10) | |
return factor * u | |
x_raw, y_raw = d6[..., :3], d6[..., 3:] | |
x = F.normalize(x_raw, dim=-1) | |
y = F.normalize(y_raw - proj_u2a(x, y_raw), dim=-1) | |
z = torch.cross(x, y, dim=-1) | |
return torch.stack((x, y, z), dim=-1) | |
class ReniLatentCodeEstimator(BaseModule): | |
class Config(BaseModule.Config): | |
triplane_features: int = 40 | |
n_layers: int = 5 | |
hidden_features: int = 512 | |
activation: str = "relu" | |
pool: str = "mean" | |
reni_env_config: dict = field(default_factory=dict) | |
cfg: Config | |
def configure(self): | |
layers = [] | |
cur_features = self.cfg.triplane_features * 3 | |
for _ in range(self.cfg.n_layers): | |
layers.append( | |
nn.Conv2d( | |
cur_features, | |
self.cfg.hidden_features, | |
kernel_size=3, | |
padding=0, | |
stride=2, | |
) | |
) | |
layers.append(self.make_activation(self.cfg.activation)) | |
cur_features = self.cfg.hidden_features | |
self.layers = nn.Sequential(*layers) | |
self.reni_env_map = RENIEnvMap(self.cfg.reni_env_config) | |
self.latent_dim = self.reni_env_map.field.latent_dim | |
self.fc_latents = nn.Linear(self.cfg.hidden_features, self.latent_dim * 3) | |
nn.init.normal_(self.fc_latents.weight, mean=0.0, std=0.3) | |
self.fc_rotations = nn.Linear(self.cfg.hidden_features, 6) | |
nn.init.constant_(self.fc_rotations.bias, 0.0) | |
nn.init.normal_( | |
self.fc_rotations.weight, mean=0.0, std=0.01 | |
) # Small variance here | |
self.fc_scale = nn.Linear(self.cfg.hidden_features, 1) | |
nn.init.constant_(self.fc_scale.bias, 0.0) | |
nn.init.normal_(self.fc_scale.weight, mean=0.0, std=0.01) # Small variance here | |
def make_activation(self, activation): | |
if activation == "relu": | |
return nn.ReLU(inplace=True) | |
elif activation == "silu": | |
return nn.SiLU(inplace=True) | |
else: | |
raise NotImplementedError | |
def forward( | |
self, | |
triplane: Float[Tensor, "B 3 F Ht Wt"], | |
rotation: Optional[Float[Tensor, "B 3 3"]] = None, | |
) -> dict[str, Any]: | |
x = self.layers( | |
triplane.reshape( | |
triplane.shape[0], -1, triplane.shape[-2], triplane.shape[-1] | |
) | |
) | |
x = x.mean(dim=[-2, -1]) | |
latents = self.fc_latents(x).reshape(-1, self.latent_dim, 3) | |
rotations = rotation_6d_to_matrix(self.fc_rotations(x)) | |
scale = self.fc_scale(x) | |
if rotation is not None: | |
rotations = rotations @ rotation.to(dtype=rotations.dtype) | |
env_map = self.reni_env_map(latents, rotations, scale) | |
return {"illumination": env_map["rgb"]} | |