ucaslcl's picture
Update app.py
0ff7c49 verified
raw
history blame
8.41 kB
import gradio as gr
import spaces
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import numpy as np
import os
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
model = model.eval().cuda()
html_file = './demo.html'
@spaces.GPU
def run_GOT(image_array, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
image = image_array
if got_mode == "plain texts OCR":
res = model.chat(tokenizer, image, ocr_type='ocr')
elif got_mode == "format texts OCR":
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file=html_file)
elif got_mode == "plain multi-crop OCR":
res = model.chat_crop(tokenizer, image, ocr_type='ocr')
elif got_mode == "format multi-crop OCR":
res = model.chat_crop(tokenizer, image, ocr_type='format', render=True, save_render_file=html_file)
elif got_mode == "plain fine-grained OCR":
res = model.chat(tokenizer, image, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color)
elif got_mode == "format fine-grained OCR":
res = model.chat(tokenizer, image, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=html_file)
print("res:\n", res)
if "format" in got_mode:
with open(html_file, 'r') as f:
demo_html = f.read()
print("demo_html: \n", demo_html)
print(os.path.abspath(html_file))
return res, demo_html
return res, None
def task_update(task):
if "fine-grained" in task:
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
]
else:
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
]
def fine_grained_update(task):
if task == "box":
return [
gr.update(visible=False, value = ""),
gr.update(visible=True),
]
elif task == 'color':
return [
gr.update(visible=True),
gr.update(visible=False, value = ""),
]
with gr.Blocks() as demo:
gr.Markdown("""
# General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
"πŸ”₯πŸ”₯πŸ”₯This is the official online demo of GOT-OCR-2.0 model!!!"
### Repo
- **Hugging Face**: [ucaslcl/GOT-OCR2_0](https://huggingface.co/ucaslcl/GOT-OCR2_0)
- **GitHub**: [Ucas-HaoranWei/GOT-OCR2_0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/)
- **Paper**: [AriXiv](https://arxiv.org/abs/2409.01704)
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="upload your image")
task_dropdown = gr.Dropdown(
choices=[
"plain texts OCR",
"format texts OCR",
"plain multi-crop OCR",
"format multi-crop OCR",
"plain fine-grained OCR",
"format fine-grained OCR",
],
label="Choose one mode of GOT",
value="plain texts OCR"
)
fine_grained_dropdown = gr.Dropdown(
choices=["box", "color"],
label="fine-grained type",
visible=False
)
color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="color list",
visible=False
)
box_input = gr.Textbox(
label="input box: [x1,y1,x2,y2]",
placeholder="e.g., [0,0,100,100]",
visible=False
)
submit_button = gr.Button("Submit")
with gr.Column():
ocr_result = gr.Textbox(label="GOT output")
gr.Markdown(
"""
\\[
\\begin{array}{l}
d_{L}\\left( C_{L},\\left\\{ v^{\\prime }\\right\\} \\right) =\\left\\vert C_{L}\\right\\vert
+\\left\\vert \\left\\{ v^{\\prime }\\right\\} \\right\\vert +2\\left( d_{T}\\left(
C_{L},v^{\\prime }\\right) -1\\right) \\\\\\
\\quad \\quad \\quad \\quad =\\left\\vert C_{v}\\right\\vert -1+\\left\\vert
S_{v}^{*}\\right\\vert +2\\left( \\mathrm{rad}\\,T-1\\right) \\\\\\
\\quad \\quad \\quad \\quad =\\left\\vert C{ }_{v}\\right\\vert +\\left\\vert
S_{v}^{*}\\right\\vert +2\\left( d_{T}\\left( C_{v},S_{v}^{*}\\right) -1\\right) \\\\\\
\\quad \\quad \\quad \\quad \\quad -1+2\\left( \\mathrm{rad}\\,T-d_{T}\\left( C_{v},S_{v}^{*}\\right)
\\right) \\\\\\
\\quad \\quad \\quad \\quad =d_{L}\\left( C_{v},S_{v}^{*}\\right) +1+2\\left( \\mathrm{rad}%
\\text{\\,}T-1-d_{T}\\left( C_{v},S_{v}^{*}\\right) \\right) \\\\\\
\\quad \\quad \\quad \\quad \\quad =e_{L}\\left( C_{v}\\right) +1+2\\left( \\mathrm{rad}%
\\text{\\,}T -1-d_{T}\\left( C_{v},S_{v}^{*}\\right)\\right) .
\\end{array}
\\]
"""
)
with gr.Column():
html_show = gr.HTML(f'<a href="{html_file}" target="_blank">Open Demo HTML</a>')
with gr.Column():
html_result = gr.HTML(
value="""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>MathJax Example</title>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/es5/bundle.js"></script>
<style>
#content {
max-width: 800px;
margin: auto;
}
</style>
</head>
<body>
<div id="content">
<p>Here is an example of a LaTeX formula:</p>
<div id="math-content">
\\[
\\begin{array}{l}
d_{L}\\left( C_{L},\\left\\{ v^{\\prime }\\right\\} \\right) =\\left\\vert C_{L}\\right\\vert
+\\left\\vert \\left\\{ v^{\\prime }\\right\\} \\right\\vert +2\\left( d_{T}\\left(
C_{L},v^{\\prime }\\right) -1\\right) \\\\\\
\\quad \\quad \\quad \\quad =\\left\\vert C_{v}\\right\\vert -1+\\left\\vert
S_{v}^{*}\\right\\vert +2\\left( \\mathrm{rad}\\,T-1\\right) \\\\\\
\\quad \\quad \\quad \\quad =\\left\\vert C{ }_{v}\\right\\vert +\\left\\vert
S_{v}^{*}\\right\\vert +2\\left( d_{T}\\left( C_{v},S_{v}^{*}\\right) -1\\right) \\\\\\
\\quad \\quad \\quad \\quad \\quad -1+2\\left( \\mathrm{rad}\\,T-d_{T}\\left( C_{v},S_{v}^{*}\\right)
\\right) \\\\\\
\\quad \\quad \\quad \\quad =d_{L}\\left( C_{v},S_{v}^{*}\\right) +1+2\\left( \\mathrm{rad}%
\\text{\\,}T-1-d_{T}\\left( C_{v},S_{v}^{*}\\right) \\right) \\\\\\
\\quad \\quad \\quad \\quad \\quad =e_{L}\\left( C_{v}\\right) +1+2\\left( \\mathrm{rad}%
\\text{\\,}T -1-d_{T}\\left( C_{v},S_{v}^{*}\\right)\\right) .
\\end{array}
\\]
</div>
</div>
</body>
</html>
""",
label="rendered html", show_label=True)
gr.Examples(
examples=[
["assets/coco.jpg", "plain texts OCR", "", "", ""],
["assets/en2.png", "plain texts OCR", "", "", ""],
["assets/eq.jpg", "format texts OCR", "", "", ""],
["assets/table.jpg", "format texts OCR", "", "", ""],
["assets/giga.jpg", "format multi-crop OCR", "", "", ""],
["assets/aff2.png", "plain fine-grained OCR", "box", "", "[409,763,756,891]"],
["assets/color.png", "plain fine-grained OCR", "color", "red", ""],
],
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
outputs=[ocr_result, html_result],
fn = run_GOT,
label="examples",
)
task_dropdown.change(
task_update,
inputs=[task_dropdown],
outputs=[fine_grained_dropdown, color_dropdown, box_input]
)
fine_grained_dropdown.change(
fine_grained_update,
inputs=[fine_grained_dropdown],
outputs=[color_dropdown, box_input]
)
submit_button.click(
run_GOT,
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
outputs=[ocr_result, html_result]
)
demo.launch()