Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
base_model = "stevenArtificial/Babaru-Llama-3.2-1B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(base_model) | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=torch.float16 | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
base_model, | |
quantization_config=quantization_config, | |
device_map="auto" | |
) | |
def generate(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
iface = gr.Interface( | |
fn=generate, | |
inputs=gr.Textbox(lines=4, label="Prompt"), | |
outputs=gr.Textbox(label="Response"), | |
title="Babaru LLaMA-3.2-1B-Instruct Chatbot", | |
description="Interactive demo using Babaru fine-tuned LLaMA-3.2-1B-Instruct by stevenArtificial." | |
) | |
iface.launch() |