chore(misc): update files
Browse files- app.py +67 -4
- texts.json +0 -0
- utils.py +94 -0
app.py
CHANGED
@@ -1,7 +1,70 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from utils import checkpoints, load_model, log_perplexity
|
|
|
4 |
|
5 |
+
|
6 |
+
class ModelManager:
|
7 |
+
"""Class to manage model loading and perplexity calculation state."""
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
self.loaded_models = None
|
11 |
+
|
12 |
+
def load_models(self, checkpoint_input_str: str) -> str:
|
13 |
+
"""Load models from a comma-separated string of checkpoint names."""
|
14 |
+
checkpoint_list = [
|
15 |
+
c.strip() for c in checkpoint_input_str.split(",") if c.strip()
|
16 |
+
]
|
17 |
+
|
18 |
+
if not checkpoint_list:
|
19 |
+
return "Please enter at least one model checkpoint name."
|
20 |
+
|
21 |
+
try:
|
22 |
+
self.loaded_models = load_model(checkpoint_list)
|
23 |
+
return "Models loaded successfully!"
|
24 |
+
except Exception as e:
|
25 |
+
return f"Model loading failed: {e}"
|
26 |
+
|
27 |
+
def calculate_perplexity(self) -> dict | str:
|
28 |
+
"""Calculate perplexity using the loaded models."""
|
29 |
+
if self.loaded_models is None:
|
30 |
+
return "Please load models first."
|
31 |
+
|
32 |
+
try:
|
33 |
+
result = log_perplexity()
|
34 |
+
return result
|
35 |
+
except Exception as e:
|
36 |
+
return f"Perplexity calculation failed: {e}"
|
37 |
+
|
38 |
+
|
39 |
+
def create_interface() -> gr.Blocks:
|
40 |
+
"""Create and return the Gradio interface."""
|
41 |
+
manager = ModelManager()
|
42 |
+
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
gr.Markdown("# Language Model Perplexity Calculator (Sequential Version)")
|
45 |
+
gr.Markdown("Enter Hugging Face model checkpoint names (comma-separated).")
|
46 |
+
|
47 |
+
checkpoint_input = gr.Textbox(
|
48 |
+
label="Checkpoints (e.g. Qwen/Qwen2.5-14B-Instruct)",
|
49 |
+
value=", ".join(checkpoints),
|
50 |
+
)
|
51 |
+
|
52 |
+
load_btn = gr.Button("Load Models", variant="primary")
|
53 |
+
perplexity_btn = gr.Button("Calculate Perplexity")
|
54 |
+
|
55 |
+
load_output = gr.Textbox(label="Model Loading Status", interactive=False)
|
56 |
+
perplexity_output = gr.JSON(label="Perplexity Results")
|
57 |
+
|
58 |
+
# Connect event handlers
|
59 |
+
load_btn.click(
|
60 |
+
fn=manager.load_models, inputs=checkpoint_input, outputs=load_output
|
61 |
+
)
|
62 |
+
|
63 |
+
perplexity_btn.click(fn=manager.calculate_perplexity, outputs=perplexity_output)
|
64 |
+
|
65 |
+
return demo
|
66 |
+
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
demo = create_interface()
|
70 |
+
demo.launch()
|
texts.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
utils.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Final
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import ujson as json
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
dev: Final = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
texts: Final = json.load(open("texts.json", "r"))
|
10 |
+
|
11 |
+
checkpoints = ["HuggingFaceTB/SmolLM2-135M"] # Inputs
|
12 |
+
|
13 |
+
|
14 |
+
def load_model(checkpoints: list[str]) -> dict:
|
15 |
+
tokenizers = [
|
16 |
+
AutoTokenizer.from_pretrained(checkpoint) for checkpoint in checkpoints
|
17 |
+
]
|
18 |
+
|
19 |
+
models = [
|
20 |
+
AutoModelForCausalLM.from_pretrained(
|
21 |
+
checkpoint,
|
22 |
+
device_map="auto",
|
23 |
+
torch_dtype=torch.bfloat16,
|
24 |
+
)
|
25 |
+
.to(dev)
|
26 |
+
.eval()
|
27 |
+
for checkpoint in checkpoints
|
28 |
+
]
|
29 |
+
|
30 |
+
# Load the models and tokenizers into a dictionary
|
31 |
+
return {
|
32 |
+
checkpoint: {"model": model, "tokenizer": tokenizer}
|
33 |
+
for checkpoint, model, tokenizer in zip(checkpoints, models, tokenizers)
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
def _perplexity(model, tokenizer, text):
|
38 |
+
encodings = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
39 |
+
input_ids = encodings.input_ids.to(dev)
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model(input_ids, labels=input_ids)
|
42 |
+
loss = outputs.loss.item()
|
43 |
+
return torch.exp(torch.tensor(loss)).item()
|
44 |
+
|
45 |
+
|
46 |
+
num_samples: Final[int] = 1500 # Sample size for perplexity calculation
|
47 |
+
sample_length: Final[int] = 128 # Maximum length of text to consider for perplexity
|
48 |
+
|
49 |
+
loaded = load_model(checkpoints)
|
50 |
+
|
51 |
+
|
52 |
+
def log_perplexity() -> dict:
|
53 |
+
# Initialize a dictionary to store perplexity
|
54 |
+
ppls = {checkpoint: [] for checkpoint in loaded.keys()}
|
55 |
+
for i in range(num_samples):
|
56 |
+
text = texts[i]
|
57 |
+
if len(text.strip()) == 0:
|
58 |
+
continue
|
59 |
+
|
60 |
+
text = text.strip()[:sample_length]
|
61 |
+
|
62 |
+
# Calculate perplexity for each model
|
63 |
+
current_ppls = {}
|
64 |
+
for checkpoint, info in loaded.items():
|
65 |
+
ppl = _perplexity(
|
66 |
+
info["model"],
|
67 |
+
info["tokenizer"],
|
68 |
+
text,
|
69 |
+
)
|
70 |
+
current_ppls[checkpoint] = ppl
|
71 |
+
|
72 |
+
# Filter out outliers
|
73 |
+
if all(1 < ppl < 1e4 for ppl in current_ppls.values()):
|
74 |
+
for checkpoint, ppl in current_ppls.items():
|
75 |
+
ppls[checkpoint].append(ppl)
|
76 |
+
|
77 |
+
# Convert perplexity into log scale
|
78 |
+
log_ppls: dict = {checkpoint: np.log(ppl) for checkpoint, ppl in ppls.items()}
|
79 |
+
|
80 |
+
# Calculate the mean perplexity for each model
|
81 |
+
mean_log_ppls: dict = {
|
82 |
+
checkpoint: np.mean(ppl) for checkpoint, ppl in log_ppls.items()
|
83 |
+
}
|
84 |
+
|
85 |
+
# Calculate the standard deviation of perplexity for each model
|
86 |
+
std_log_ppls: dict = {
|
87 |
+
checkpoint: np.std(ppl) for checkpoint, ppl in log_ppls.items()
|
88 |
+
}
|
89 |
+
|
90 |
+
return {
|
91 |
+
"ppls": ppls,
|
92 |
+
"mean_ppls": mean_log_ppls,
|
93 |
+
"std_ppls": std_log_ppls,
|
94 |
+
}
|