Flex.2-preview / app.py
suayptalha's picture
Update app.py
eb3b93f verified
import os
os.system("pip uninstall torchvision -y")
os.system("pip install torchvision --force-reinstall --no-cache-dir")
import torch
from diffusers import AutoPipelineForText2Image
import gradio as gr
from PIL import Image
import spaces
pipe = AutoPipelineForText2Image.from_pretrained(
"ostris/Flex.2-preview",
custom_pipeline="pipeline.py",
torch_dtype=torch.bfloat16,
).to("cuda")
@spaces.GPU
def generate_image(
prompt: str,
inpaint_img: Image.Image,
inpaint_mask: Image.Image,
control_img: Image.Image,
height: int,
width: int,
guidance_scale: float,
num_inference_steps: int,
seed: int,
control_strength: float,
control_stop: float,
):
gen = torch.Generator(device="cuda").manual_seed(seed)
inp_img = inpaint_img.convert("RGB")
inp_mask = inpaint_mask.convert("RGB")
ctrl_img = control_img.convert("RGB")
result = pipe(
prompt=prompt,
inpaint_image=inp_img,
inpaint_mask=inp_mask,
control_image=ctrl_img,
control_strength=control_strength,
control_stop=control_stop,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=gen,
)
return result.images[0]
with gr.Blocks(title="Flex.2-preview Image Generator") as demo:
gr.Markdown("# Flex.2-preview Text→Image Generator")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt...", lines=2)
with gr.Row():
inpaint_img = gr.Image(type="pil", label="Inpaint Image")
inpaint_mask = gr.Image(type="pil", label="Inpaint Mask")
control_img = gr.Image(type="pil", label="Control Image")
with gr.Row():
height = gr.Slider(64, 2048, value=512, step=64, label="Height")
width = gr.Slider(64, 2048, value=512, step=64, label="Width")
with gr.Row():
guidance_scale = gr.Slider(0.0, 20.0, value=3.5, step=0.1, label="Guidance Scale")
num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps")
seed = gr.Number(value=42, precision=0, label="Random Seed")
control_strength = gr.Slider(0.0, 1.0, value=0.0, step=0.01, label="Control Strength")
control_stop = gr.Slider(0.0, 1.0, value=1.0, step=0.01, label="Control Stop")
generate_btn = gr.Button("Generate")
output = gr.Image(type="pil", label="Generated Image")
generate_btn.click(
fn=generate_image,
inputs=[
prompt,
inpaint_img,
inpaint_mask,
control_img,
height,
width,
guidance_scale,
num_inference_steps,
seed,
control_strength,
control_stop,
],
outputs=[output],
)
if __name__ == "__main__":
demo.launch(share=True)