Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -14,19 +22,26 @@ def respond(
|
|
14 |
max_tokens,
|
15 |
temperature,
|
16 |
top_p,
|
|
|
17 |
):
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
29 |
-
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
@@ -35,30 +50,21 @@ def respond(
|
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from gradio_client import Client, handle_file
|
4 |
|
5 |
+
# Gradio Client
|
6 |
+
client = Client("vikhyatk/moondream2")
|
|
|
|
|
7 |
|
8 |
+
# Resmi tanımlayan fonksiyon
|
9 |
+
def describe_image(image):
|
10 |
+
result = client.predict(
|
11 |
+
img=handle_file(image),
|
12 |
+
prompt="Describe this image.",
|
13 |
+
api_name="/answer_question"
|
14 |
+
)
|
15 |
+
return result
|
16 |
|
17 |
+
# ChatInterface ve resim işleme fonksiyonu
|
18 |
def respond(
|
19 |
message,
|
20 |
history: list[tuple[str, str]],
|
|
|
22 |
max_tokens,
|
23 |
temperature,
|
24 |
top_p,
|
25 |
+
image
|
26 |
):
|
27 |
+
# Sistem mesajını ve önceki sohbeti al
|
28 |
messages = [{"role": "system", "content": system_message}]
|
29 |
+
|
30 |
for val in history:
|
31 |
if val[0]:
|
32 |
messages.append({"role": "user", "content": val[0]})
|
33 |
if val[1]:
|
34 |
messages.append({"role": "assistant", "content": val[1]})
|
35 |
|
36 |
+
# Resim ile ilgili açıklamayı ekle
|
37 |
+
image_description = describe_image(image)
|
38 |
+
messages.append({"role": "assistant", "content": image_description})
|
39 |
+
|
40 |
+
# Kullanıcı mesajını ekle
|
41 |
messages.append({"role": "user", "content": message})
|
42 |
|
43 |
response = ""
|
44 |
+
# Modelden gelen yanıtı al ve döngüde token'ları birleştir
|
45 |
for message in client.chat_completion(
|
46 |
messages,
|
47 |
max_tokens=max_tokens,
|
|
|
50 |
top_p=top_p,
|
51 |
):
|
52 |
token = message.choices[0].delta.content
|
|
|
53 |
response += token
|
54 |
yield response
|
55 |
|
56 |
+
# Gradio app arayüzünü oluştur
|
57 |
+
demo = gr.Interface(
|
58 |
+
fn=respond,
|
59 |
+
inputs=[
|
|
|
|
|
|
|
60 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
61 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
62 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
63 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
64 |
+
gr.Image(type="pil", label="Upload an Image") # Resim girişi
|
|
|
|
|
|
|
|
|
|
|
65 |
],
|
66 |
+
outputs="text", # Çıktıyı metin olarak ver
|
67 |
)
|
68 |
|
|
|
69 |
if __name__ == "__main__":
|
70 |
demo.launch()
|