import gradio as gr from huggingface_hub import InferenceClient from gradio_client import Client, handle_file # Gradio Client client = Client("vikhyatk/moondream2") # Resmi tanımlayan fonksiyon def describe_image(image): result = client.predict( img=handle_file(image), prompt="Describe this image.", api_name="/answer_question" ) return result # ChatInterface ve resim işleme fonksiyonu def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, image ): # Sistem mesajını ve önceki sohbeti al messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Resim ile ilgili açıklamayı ekle image_description = describe_image(image) messages.append({"role": "assistant", "content": image_description}) # Kullanıcı mesajını ekle messages.append({"role": "user", "content": message}) response = "" # Modelden gelen yanıtı al ve döngüde token'ları birleştir for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Gradio app arayüzünü oluştur demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Image(type="pil", label="Upload an Image") # Resim girişi ], outputs="text", # Çıktıyı metin olarak ver ) if __name__ == "__main__": demo.launch()