File size: 93,595 Bytes
f7a83c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
# coding=utf-8
# Copyright 2022 The OFA-Sys Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch OFA model."""

import math
import random
from typing import Optional, Tuple
from dataclasses import dataclass

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

# start fixing
# from ...activations import ACT2FN
# from ...file_utils import (
#     add_code_sample_docstrings,
#     add_end_docstrings,
#     add_start_docstrings,
#     add_start_docstrings_to_model_forward,
#     replace_return_docstrings,
# )
# from ...file_utils import ModelOutput
# from ...modeling_outputs import (
#     BaseModelOutputWithPastAndCrossAttentions,
#     Seq2SeqLMOutput,
#     Seq2SeqModelOutput,
# )
# from ...modeling_utils import PreTrainedModel
# from ...utils import logging
from transformers.activations import ACT2FN
from transformers.file_utils import (
    add_code_sample_docstrings,
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
    ModelOutput
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

# end fixing

from .configuration_ofa import OFAConfig
from .resnet import ResNet
from torch import Tensor
from typing import Dict, List, Optional, Tuple

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "OFA-Sys/OFA-base"
_CONFIG_FOR_DOC = "OFAConfig"
_TOKENIZER_FOR_DOC = "OFATokenizer"

DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024

DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8)

OFA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "OFA-Sys/OFA-tiny",
    "OFA-Sys/OFA-medium",
    "OFA-Sys/OFA-base",
    "OFA-Sys/OFA-large",
]

try:
    from apex.normalization import FusedLayerNorm as _FusedLayerNorm

    has_fused_layernorm = True

    class FusedLayerNorm(_FusedLayerNorm):
        @torch.jit.unused
        def forward(self, x):
            if not x.is_cuda:
                return super().forward(x)
            else:
                with torch.cuda.device(x.device):
                    return super().forward(x)

except ImportError:
    has_fused_layernorm = False


def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
    r"""
    Layer normalization.
    If apex is available, use `FusedLayerNorm` instead.
    """
    if torch.jit.is_scripting():
        export = True
    if not export and torch.cuda.is_available() and has_fused_layernorm:
        return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
    return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)


def make_token_bucket_position(bucket_size, max_position=DEFAULT_MAX_SOURCE_POSITIONS):
    r"""
    Make relative position indices for the text.
    """
    context_pos = torch.arange(max_position, dtype=torch.long)[:, None]
    memory_pos = torch.arange(max_position, dtype=torch.long)[None, :]
    relative_pos = context_pos - memory_pos
    sign = torch.sign(relative_pos)
    mid = bucket_size // 2
    abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos))
    log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position - 1) / mid) * (mid - 1)) + mid
    log_pos = log_pos.int()
    bucket_pos = torch.where(abs_pos.le(mid), relative_pos, log_pos * sign).long()
    return bucket_pos + bucket_size - 1


def make_image_bucket_position(bucket_size, num_relative_distance):
    r"""
    Make relative position indices for the image.
    """
    coords_h = torch.arange(bucket_size)
    coords_w = torch.arange(bucket_size)
    coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
    coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
    relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
    relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
    relative_coords[:, :, 0] += bucket_size - 1  # shift to start from 0
    relative_coords[:, :, 1] += bucket_size - 1
    relative_coords[:, :, 0] *= 2 * bucket_size - 1
    relative_position_index = torch.zeros(size=(bucket_size * bucket_size + 1,) * 2, dtype=relative_coords.dtype)
    relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
    relative_position_index[0, 0:] = num_relative_distance - 3
    relative_position_index[0:, 0] = num_relative_distance - 2
    relative_position_index[0, 0] = num_relative_distance - 1
    return relative_position_index


def new_arange(x, *size):
    r"""
    Return a Tensor of `size` filled with a range function on the device of x.
    If size is empty, using the size of the variable x.
    """
    if len(size) == 0:
        size = x.size()
    return torch.arange(size[-1], device=x.device).expand(*size).contiguous()


def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    r"""
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

    assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
    r"""
    Make causal mask used for uni-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min)
    mask_cond = torch.arange(mask.size(-1))
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.ones(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    r"""
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)


def Embedding(num_embeddings, embedding_dim, padding_idx=None, zero_init=False):
    r"""
    Embedding for tokens
    """
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5)
    if padding_idx is not None:
        nn.init.constant_(m.weight[padding_idx], 0)
    if zero_init:
        nn.init.constant_(m.weight, 0)
    return m


def Linear(in_features, out_features, bias=True):
    r"""
    Implementation of linear projection with xavier initialization
    """
    m = nn.Linear(in_features, out_features, bias)
    nn.init.xavier_uniform_(m.weight)
    if bias:
        nn.init.constant_(m.bias, 0.0)
    return m


class LayerDropModuleList(nn.ModuleList):
    r"""
    A LayerDrop implementation based on :class:`torch.nn.ModuleList`.

    Args:
        p (float): probability of dropping out each layer
        modules (iterable, optional): an iterable of modules to add
    """

    def __init__(self, p, modules=None):
        super().__init__(modules)
        self.p = p

    def __iter__(self):
        dropout_probs = torch.empty(len(self)).uniform_()
        for i, m in enumerate(super().__iter__()):
            if not self.training or (dropout_probs[i] > self.p):
                yield m


def drop_path(x, drop_prob: float = 0.0, training: bool = False):
    r"""
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Args:
        x (`nn.Modules`): input nn layers.
        drop_prob (`float`): drop path ratio.
        training (`bool`): whether is training or inference.
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (1, x.shape[1], 1)
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    r"""
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Args:
        drop_prob: drop path ratio.
    """

    def __init__(self, drop_prob=None):
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class OFAAttention(nn.Module):
    r"""
    Multi-headed attention, with additional implementation for NormFormer.

    Args:
        embed_dim (`int`): embedding dimension.
        num_heads (`int`): the number of attention heads.
        dropout (`float32`): the ratio for dropout.
        is_decoder (`bool`): whether or not decoder attention.
        bias (`bool`): whether to add bias.
        scale_heads (`bool`): whether to learn scaling heads, only for Normformer.
    """

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        scale_heads: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert (
                self.head_dim * num_heads == self.embed_dim
        ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})."
        scale_factor=2
        self.scaling = float(self.head_dim * scale_factor) ** -0.5
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.attn_dropout = nn.Dropout(p=dropout)
        self.c_attn = nn.Parameter(torch.ones((self.num_heads,)), requires_grad=True) if scale_heads else None

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        r"""
        Reshape tensors for multi-head attention.
        """
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        attn_bias: Optional[torch.Tensor] = None,
    ):
        r"""
        Args:
            hidden_states (`torch.FloatTensor` of shape `(bsz, tgt_len, embed_dim)`)`: input states.
            key_value_states (`torch.FloatTensor` of shape (bsz, tgt_len, embed_dim), *optional*): key value states.
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
                cached past key value states for fast inference.
            attention_mask (`torch.FloatTensor` of shape `(bsz, 1, tgt_len, seq_len)`, *optional*): attention mask.
            output_attentions (`bool`, *optional*): whether to output attention weights of all layers.
            attn_bias (`torch.FloatTensor` of shape `(bsz, 1, tgt_len, src_len)`, *optional*):
                the attention bias for positional information.

        Returns:
            attn_output (`torch.FloatTensor` of shape `(bsz, tgt_len, embed_dim)`): attention outputs.
            attn_weights_reshaped (`torch.FloatTensor`, *optional*): attention weights of all layers.
            past_key_value (`torch.FloatTensor`, *optional*): cached key value states for fast inference.
        """

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len, embed_dim = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )

        # Add attention bias for positional information
        if attn_bias is not None:
            attn_weights += attn_bias

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = F.softmax(attn_weights, dim=-1)

        if output_attentions:
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = self.attn_dropout(attn_weights)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

        if self.c_attn is not None:
            attn_output = attn_output.view(bsz, tgt_len, self.num_heads, self.head_dim)
            attn_output = torch.einsum("bthd,h->bthd", attn_output, self.c_attn)
            attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value


class OFAEncoderLayer(nn.Module):
    r"""
    OFA encoder layer implementation.

    Args:
        config: configuration for OFA.
        drop_path_rate: the ratio for drop path.
    """

    def __init__(self, config: OFAConfig, drop_path_rate=0.0):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = OFAAttention(
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.self_attn_layer_norm = LayerNorm(self.embed_dim)
        self.self_attn_mid_layer_norm = LayerNorm(self.embed_dim) if config.normformer else None
        self.dropout = nn.Dropout(config.dropout)
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = nn.Dropout(config.activation_dropout)
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.ffn_layer_norm = LayerNorm(config.encoder_ffn_dim) if config.normformer else None
        self.final_layer_norm = LayerNorm(self.embed_dim)
        self.normalize_before = config.encoder_normalize_before
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()

    def residual_connection(self, x, residual):
        r"""
        Residual connection with drop path.
        """
        return residual + self.drop_path(x)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        output_attentions: bool = False,
        attn_bias: Optional[torch.Tensor] = None,
    ):
        r"""
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape *(bsz, src_len, embed_dim)*
            attention_mask (`torch.FloatTensor`): attention mask of size
                *(bsz, 1, src_len, src_len)* where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                whether to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            attn_bias (`torch.FloatTensor`): bias for positional information.

        Returns:
            outputs (`tuple(torch.FloatTensor)`):
                output hidden states of size (bsz, src_len, embed_dim), optionally with attention weights.
        """

        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            attn_bias=attn_bias,
        )
        if self.self_attn_mid_layer_norm:
            hidden_states = self.self_attn_mid_layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.residual_connection(hidden_states, residual)
        if not self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        residual = hidden_states

        if self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = self.activation_dropout(hidden_states)
        if self.ffn_layer_norm:
            hidden_states = self.ffn_layer_norm(hidden_states)
        hidden_states = self.fc2(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.residual_connection(hidden_states, residual)
        if not self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class OFADecoderLayer(nn.Module):
    r"""
    OFA decoder layer implementation.

    Args:
        config: configuration for OFA.
        drop_path_rate: the ratio for drop path.
    """

    def __init__(self, config: OFAConfig, drop_path_rate=0.0):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = OFAAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.dropout = nn.Dropout(p=config.dropout)
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = nn.Dropout(p=config.activation_dropout)

        self.self_attn_layer_norm = LayerNorm(self.embed_dim)
        self.self_attn_mid_layer_norm = LayerNorm(self.embed_dim) if config.normformer else None
        self.cross_attn = OFAAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.cross_attn_layer_norm = LayerNorm(self.embed_dim)
        self.cross_attn_mid_layer_norm = LayerNorm(self.embed_dim) if config.normformer else None
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.ffn_layer_norm = LayerNorm(config.decoder_ffn_dim) if config.normformer else None
        self.final_layer_norm = LayerNorm(self.embed_dim)
        self.normalize_before = config.decoder_normalize_before
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()

    def residual_connection(self, x, residual):
        r"""
        Residual connection with drop path.
        """
        return residual + self.drop_path(x)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        self_attn_bias: Optional[torch.Tensor] = None,
        cross_attn_bias: Optional[torch.Tensor] = None,
    ):
        r"""
        Args:
            hidden_states (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`): input to the layer.
            attention_mask (`torch.FloatTensor` of shape `(bsz, 1, tgt_len, src_len)`):
                attention mask where padding elements are indicated by very large negative values.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, embed_dim)`):
                cross attention input to the layer.
            encoder_attention_mask (`torch.FloatTensor` of shape `(bsz, 1, tgt_len, src_len)`):
                encoder attention mask where padding elements are indicated by very large negative values.
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*): whether to return the attentions tensors of all attention layers.
            use_cache (`bool`, *optional*): whether to use cache
            self_attn_bias (`torch.FloatTensor`): self attention bias for positional information.
            cross_attn_bias (`torch.FloatTensor`): cross attention bias for positional information.
        """

        # Self attention with intermediate layernorm
        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to position 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            attn_bias=self_attn_bias,
        )
        if self.self_attn_mid_layer_norm:
            hidden_states = self.self_attn_mid_layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.residual_connection(hidden_states, residual)
        if not self.normalize_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        # Cross attention with intermediate layernorm
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states
            if self.normalize_before:
                hidden_states = self.cross_attn_layer_norm(hidden_states)
            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
                attn_bias=cross_attn_bias,
            )
            if self.cross_attn_mid_layer_norm:
                hidden_states = self.cross_attn_mid_layer_norm(hidden_states)
            hidden_states = self.dropout(hidden_states)
            hidden_states = self.residual_connection(hidden_states, residual)
            if not self.normalize_before:
                hidden_states = self.cross_attn_layer_norm(hidden_states)

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # FFN with intermediate layernorm
        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = self.activation_dropout(hidden_states)
        if self.ffn_layer_norm:
            hidden_states = self.ffn_layer_norm(hidden_states)
        hidden_states = self.fc2(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.residual_connection(hidden_states, residual)
        if not self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class OFAPreTrainedModel(PreTrainedModel):
    r"""
    Base class OFA
    """

    config_class = OFAConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        r"""
        Weight initialization which follows BERT.
        """
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        r"""
        Turn on the switch of gradient checkpointing.
        """
        if isinstance(module, (OFADecoder, OFAEncoder)):
            module.gradient_checkpointing = value


@dataclass
class OFAEncoderOutput(ModelOutput):
    r"""
    Base class for OFA's outputs.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(bsz, seq_len, hidden)`):
            Sequence of hidden-states at the output of the last layer of the model.

        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed
            or when `config.output_hidden_states=True`):

            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(bsz, seq_len, hidden)`.
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.

        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed
            or when `config.output_attentions=True`):

            Tuple of `torch.FloatTensor` (one for each layer) of shape `(bsz, num_heads, seq_len, seq_len)`.
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

        position_embedding (`torch.FloatTensor` of shape `(bsz, seq_len, hidden)`):
            postional embeddings of the inputs.
    """

    last_hidden_state: torch.FloatTensor = None
    padding_mask: torch.Tensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    position_embedding: Optional[torch.FloatTensor] = None


OFA_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`~OFAConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


OFA_GENERATION_EXAMPLE = r"""
    Image captioning example:

    ```python
    >>> from PIL import Image
    >>> from torchvision import transforms
    >>> from transformers import OFATokenizer, OFAForConditionalGeneration

    >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
    >>> resolution = 256
    >>> patch_resize_transform = transforms.Compose([
            lambda image: image.convert("RGB"),
            transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize(mean=mean, std=std)
        ])

    >>> model = OFAForConditionalGeneration.from_pretrained(ckpt_dir)
    >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir)

    >>> txt = " what is the description of the image?"
    >>> inputs = tokenizer([txt], max_length=1024, return_tensors="pt")["input_ids"]
    >>> img = Image.open(path_to_image)
    >>> patch_img = patch_resize_transform(img).unsqueeze(0)

    >>> gen = model.generate(inputs, patch_img=patch_img, num_beams=4)
    >>> print(tokenizer.decode(gen, skip_special_tokens=True, clean_up_tokenization_spaces=False))
    ```
"""


OFA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(bsz, seq_len)`):
            indices of input sequence tokens in the vocabular, and padding will be ignored by default;

            indices can be obtained using [`~OFATokenizer`].

        patch_images (`torch.FloatTensor` of shape `(bsz, 3, height, width)`):
            the resized image, which are transformed by the default operations.
        patch_images_2 (`torch.FloatTensor` of shape `(bsz, 3, height, width)`):
            the second (if it exists) image.
        patch_masks (`torch.BoolTensor`): the patches to be masked.
        token_embeddings (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`): token embeddings.
        sample_patch_num (`int`): the number of patches to sample.
        decoder_input_ids (`torch.LongTensor` of shape `(bsz, seq_len)`): indices of the sequence in the vocabulary.
        code_masks (`torch.Tensor` of shape `(bsz, seq_len)`): masks only for code generation.
        attention_mask (`torch.Tensor` of shape `(bsz, seq_len)`): attention mask for decoding.
        encoder_outputs (`OFAEncoderOutput`):
            encoder outputs with hidden states, positional embeddings, and padding masks.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(bsz, num_heads, tgt_len, head_size)`) and 2 additional tensors of
            shape `(bsz, num_heads, src_len, head_size)`.
        use_cache (`bool`): whether to use cache for faster inference.
        output_attentions (`bool`): whether to output attention weights.
        output_hidden_states (`bool`): whether to output hidden states.
        return_dict (`bool`): unused. Keep it for generation only.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""


class OFAEncoder(OFAPreTrainedModel):
    r"""
    OFA encoder consisting of layers of [`OFAEncoderLayer`].

    Args:
        config: OFAConfig
        embed_tokens (`nn.Embedding`, *optional*): output embedding
    """

    def __init__(self, config: OFAConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)

        self.dropout = nn.Dropout(config.dropout)
        self.encoder_layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
        self.num_attention_heads = config.encoder_attention_heads

        if getattr(config, "layernorm_embedding", False):
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        if config.add_type_embedding:
            self.type_embedding = Embedding(2, embed_dim, padding_idx=None)
        else:
            self.type_embedding = None

        if config.resnet_type == "resnet18":
            self.embed_images = ResNet([2, 2, 2], drop_path_rate=config.resnet_drop_path_rate)
        elif config.resnet_type == "resnet34":
            self.embed_images = ResNet([3, 4, 6], drop_path_rate=config.resnet_drop_path_rate)
        elif config.resnet_type == "resnet50":
            self.embed_images = ResNet([3, 4, 6], drop_path_rate=config.resnet_drop_path_rate)
        elif config.resnet_type == "resnet101":
            self.embed_images = ResNet([3, 4, 23], drop_path_rate=config.resnet_drop_path_rate)
        elif config.resnet_type == "resnet152":
            self.embed_images = ResNet([3, 8, 36], drop_path_rate=config.resnet_drop_path_rate)
        else:
            raise NotImplementedError
        self.image_proj = Linear(1024, embed_dim)

        if config.resnet_model_path:
            resnet_state_dict = torch.load(config.resnet_model_path)
            self.embed_images.load_state_dict(resnet_state_dict)
        if config.patch_layernorm_embedding:
            self.patch_layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.patch_layernorm_embedding = None

        self.embed_positions = Embedding(self.max_source_positions + 2, embed_dim)
        self.embed_image_positions = Embedding(config.image_bucket_size**2 + 1, embed_dim)
        self.pos_ln = LayerNorm(embed_dim)
        self.image_pos_ln = LayerNorm(embed_dim)
        self.pos_scaling = float(embed_dim / self.num_attention_heads * config.attn_scale_factor) ** -0.5
        self.pos_q_linear = nn.Linear(embed_dim, embed_dim)
        self.pos_k_linear = nn.Linear(embed_dim, embed_dim)

        if self.encoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.encoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])

        dpr = [x.item() for x in torch.linspace(0, config.encoder_drop_path_rate, config.encoder_layers)]
        self.layers.extend(
            [OFAEncoderLayer(config, drop_path_rate=dpr[i]) for i in range(config.encoder_layers)]
        )
        self.num_layers = len(self.layers)

        if config.encoder_normalize_before:
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

        self.token_bucket_size = config.token_bucket_size
        token_num_rel_dis = 2 * config.token_bucket_size - 1
        token_rp_bucket = make_token_bucket_position(config.token_bucket_size)
        self.token_rel_pos_table_list = nn.ModuleList(
            [Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in
             range(config.encoder_layers)]
        )

        self.image_bucket_size = config.image_bucket_size
        image_num_rel_dis = (2 * config.image_bucket_size - 1) * (2 * config.image_bucket_size - 1) + 3
        image_rp_bucket = make_image_bucket_position(config.image_bucket_size, image_num_rel_dis)
        self.image_rel_pos_table_list = nn.ModuleList(
            [Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in
             range(config.encoder_layers)]
        )

        if config.layernorm_embedding:
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        self.register_buffer("token_rp_bucket", token_rp_bucket)
        self.register_buffer("image_rp_bucket", image_rp_bucket)
        self.entangle_position_embedding = config.entangle_position_embedding

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        r"""
        Get the embedding weight.
        """
        return self.embed_tokens

    def set_input_embeddings(self, value):
        r"""
        Set the weight of embedding with the given tensor.
        """
        self.embed_tokens = value

    def get_rel_pos_bias(self, x, idx):
        r"""
        Get the relative positional bias of the text, for attention.
        """

        seq_len = x.size(1)
        rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
        values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight)
        values = values.unsqueeze(0).expand(x.size(0), -1, -1, -1)
        values = values.permute([0, 3, 1, 2])
        return values.contiguous()

    def get_image_rel_pos_bias(self, image_position_ids, idx):
        r"""
        Get the relative positional bias of the image, for attention.
        """

        bsz, seq_len = image_position_ids.shape
        rp_bucket_size = self.image_rp_bucket.size(1)

        rp_bucket = self.image_rp_bucket.unsqueeze(0).expand(
            bsz, rp_bucket_size, rp_bucket_size
        ).gather(1, image_position_ids[:, :, None].expand(bsz, seq_len, rp_bucket_size)
                 ).gather(2, image_position_ids[:, None, :].expand(bsz, seq_len, seq_len))
        values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight)
        values = values.permute(0, 3, 1, 2)
        return values

    def get_patch_images_info(self, patch_images, sample_patch_num, device):
        r"""
        Get the basic information of the resized image.

        Args:
            patch_images (`torch.FloatTensor` of shape `(bsz, 3, height, width)`): the resized image.
            sample_patch_num (`int`):
                the number of patches to sample. If it is equal to -1, no sampling will be performed.
            device: GPU device.

        Returns:
            image_embed (`torch.FloatTensor` of shape `(bsz, h * w, hidden)`): the output of the visual encoder.
            image_num_patches (`int`, equal to `h * w`): the number of patches.
            image_padding_mask (`torch.BooleanTensor` of shape `(bsz, h*w)`): image padding mask.
            image_position_ids (`torch.LongTensor` of shape `(bsz, h*w)`): image position ids.
            image_pos_embed (`torch.FloatTensor` of shape (bsz, h*w, hidden)): the positional embedding.
        """

        image_embed = self.embed_images(patch_images)
        h, w = image_embed.shape[-2:]
        image_num_patches = h * w
        image_padding_mask = patch_images.new_zeros((patch_images.size(0), image_num_patches)).bool()
        image_position_idx = torch.arange(w).unsqueeze(0).expand(h, w) + \
                             torch.arange(h).unsqueeze(1) * self.image_bucket_size + 1
        image_position_idx = image_position_idx.view(-1).to(device)
        image_position_ids = image_position_idx[None, :].expand(patch_images.size(0), image_num_patches)

        image_embed = image_embed.flatten(2).transpose(1, 2)
        if sample_patch_num is not None:
            patch_orders = [
                random.sample(range(image_num_patches), k=sample_patch_num)
                for _ in range(patch_images.size(0))
            ]
            patch_orders = torch.LongTensor(patch_orders).to(device)
            image_embed = image_embed.gather(
                1, patch_orders.unsqueeze(2).expand(-1, -1, image_embed.size(2))
            )
            image_num_patches = sample_patch_num
            image_padding_mask = image_padding_mask.gather(1, patch_orders)
            image_position_ids = image_position_ids.gather(1, patch_orders)
        image_pos_embed = self.embed_image_positions(image_position_ids)

        return image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed

    def forward_embedding(
            self,
            input_ids,
            image_embed: Optional[torch.Tensor] = None,
            image_embed_2: Optional[torch.Tensor] = None,
            token_embedding: Optional[torch.Tensor] = None,
            pos_embed: Optional[torch.Tensor] = None,
            image_pos_embed: Optional[torch.Tensor] = None,
            image_pos_embed_2: Optional[torch.Tensor] = None
    ):
        r"""
        Generate embeddings of both the image and the text.
        Actually since OFA unifies both unimodal and multimodal data,
        image inputs are optional.

        Args:
            input_ids (`torch.LongTensor` of shape `(bsz, seq_len)`): indices of the tokens in the vocabulary.
            image_embed (`torch.FloatTensor` of shape `(bsz, h*w, embed_dim)`, *optional*): image embeddings.
            image_embed_2 (`torch.FloatTensor` of shape `(bsz, h*w, embed_dim)`, *optional*):
                image embeddings of the second image (if it exists).
            token_embedding (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`, *optional*):
                input token embeddings to replace the embeddings of input ids.
            image_pos_embed (`torch.FloatTensor` of shape `(bsz, h*w, embed_dim)`, *optional*):
                positional embeddings of the image.
            image_pos_embed_2 (`torch.FloatTensor` of shape `(bsz, h*w, embed_dim)`, *optional*):
                positional embeddings of the second image.

        Returns:
            x (`torch.FloatTensor` of shape `(bsz, h*w+seq_len, embed_dim)`): embeddings of the input.
            embed (`torch.FloatTensor` of shape `(bsz, h*w+seq_len, embed_dim)`):
                embeddings without adding positional and type embeddings.
        """

        # embed tokens and positions
        if token_embedding is None:
            token_embedding = self.embed_tokens(input_ids)
        x = embed = self.embed_scale * token_embedding
        if self.entangle_position_embedding and pos_embed is not None:
            x += pos_embed
        if self.type_embedding is not None:
            x += self.type_embedding(input_ids.new_zeros(x.size()[:2]))
        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)
        x = self.dropout(x)

        # embed raw images
        if image_embed is not None:
            image_embed = self.image_proj(image_embed)
            image_x = image_embed = self.embed_scale * image_embed
            if self.entangle_position_embedding and image_pos_embed is not None:
                image_x += image_pos_embed
            if self.type_embedding is not None:
                image_x += self.type_embedding(input_ids.new_ones(image_x.size()[:2]))
            if self.patch_layernorm_embedding is not None:
                image_x = self.patch_layernorm_embedding(image_x)
            image_x = self.dropout(image_x)
            x = torch.cat([image_x, x], dim=1)
            embed = torch.cat([image_embed, embed], dim=1)

        if image_embed_2 is not None:
            assert self.type_embedding is not None
            image_embed_2 = self.image_proj(image_embed_2)
            image_x_2 = image_embed_2 = self.embed_scale * image_embed_2
            if self.entangle_position_embedding and image_pos_embed_2 is not None:
                image_x_2 += image_pos_embed_2
            if self.type_embedding is not None:
                image_x_2 += self.type_embedding(input_ids.new_full(image_x_2.size()[:2], fill_value=2))
            if self.patch_layernorm_embedding is not None:
                image_x_2 = self.patch_layernorm_embedding(image_x_2)
            image_x_2 = self.dropout(image_x_2)
            if self.quant_noise is not None:
                image_x_2 = self.quant_noise(image_x_2)
            x = torch.cat([image_x_2, x], dim=1)
            embed = torch.cat([image_embed_2, embed], dim=1)

        return x, embed

    def reorder_encoder_out(self, encoder_out, new_order):
        """
        Reorder encoder output according to *new_order*.

        Args:
            encoder_out: output from the ``forward()`` method
            new_order (LongTensor): desired order

        Returns:
            *encoder_out* rearranged according to *new_order*
        """

        if "last_hidden_state" not in encoder_out:
            new_encoder_out = None
        else:
            new_encoder_out = encoder_out["last_hidden_state"].index_select(0, new_order)

        if "padding_mask" not in encoder_out:
            new_encoder_padding_mask = None
        else:
            new_encoder_padding_mask = encoder_out["padding_mask"].index_select(0, new_order)


        if "position_embedding" not in encoder_out:
            new_position_embeddings = None
        else:
            new_position_embeddings = encoder_out["position_embedding"].index_select(0, new_order)

        if "hidden_states" not in encoder_out:
            new_encoer_states = None
        else:
            encoder_states = encoder_out["hidden_states"]
            new_encoer_states = ()
            if len(encoder_states) > 0:
                for idx, state in enumerate(encoder_states):
                    new_encoer_states += (state.index_select(0, new_order),)

        if "attentions" not in encoder_out:
            attentions = None
        else:
            attentions = encoder_out["attentions"]

        return OFAEncoderOutput(
            last_hidden_state=new_encoder_out,
            padding_mask=new_encoder_padding_mask,
            hidden_states=new_encoer_states,
            attentions=attentions,
            position_embedding=new_position_embeddings
        )

    def forward(
        self,
        input_ids=None,
        patch_images: Optional[torch.Tensor] = None,
        patch_images_2: Optional[torch.Tensor] = None,
        patch_masks: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        token_embeddings: Optional[torch.Tensor] = None,
        sample_patch_num: Optional[int] = None,
    ):
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(bsz, seq_len)`):
                indices of input sequence tokens in the vocabular, and padding will be ignored by default;

                indices can be obtained using [`~OFATokenizer`].

            patch_images (`torch.FloatTensor` of shape `(bsz, 3, height, width)`):
                the resized image, which are transformed by the default operations.
            patch_images_2 (`torch.FloatTensor` of shape `(bsz, 3, height, width)`):
                the second (if it exists) image.
            patch_masks (`torch.BoolTensor`): the patches to be masked.
            output_attentions (`bool`): whether to return all attention weights,
            output_hidden_states (`bool`): whether to return all hidden states.
            token_embeddings (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`): token embeddings.
            sample_patch_num (`int`): the number of patches to sample.

        Returns:
            [`OFAEncoderOutput`]:
                last_hidden_state (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`):
                    the states of the last layer.
                padding_mask (`torch.BoolTensor` of shape `(bsz, seq_len)`):
                    the padding mask of the source context.
                hidden_states (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`):
                    the states of all layers including the embeddings.
                attentions (`torch.FloatTensor` of shape `(bsz, num_heads, seq_len, seq_len)`):
                    the attention weights of all layers.
                position_embedding (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`):
                    positional embeddings of the input image and tokens.
        """

        image_embed = None
        image_embed_2 = None
        image_pos_embed = None
        image_pos_embed_2 = None
        if patch_images is not None:
            image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \
                self.get_patch_images_info(patch_images, sample_patch_num, input_ids.device)
            # image_padding_mask[~patch_masks] = True # comment the line to temporarily fix the bug of mismatch
        if patch_images_2 is not None:
            image_embed_2, image_num_patches_2, image_padding_mask_2, image_position_ids_2, image_pos_embed_2 = \
                self.get_patch_images_info(patch_images_2, sample_patch_num, input_ids.device)
            image_padding_mask_2[~patch_masks] = True

        encoder_padding_mask = input_ids.eq(self.padding_idx)
        if patch_images is not None:
            encoder_padding_mask = torch.cat([image_padding_mask, encoder_padding_mask], dim=1)
        if patch_images_2 is not None:
            encoder_padding_mask = torch.cat([image_padding_mask_2, encoder_padding_mask], dim=1)
        has_pads = encoder_padding_mask.any()

        pos_embed = self.embed_positions(new_arange(input_ids))
        x, encoder_embedding = self.forward_embedding(
            input_ids, image_embed, image_embed_2, token_embeddings,
            pos_embed, image_pos_embed, image_pos_embed_2
        )

        # account for padding while computing the representation
        if has_pads:
            x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))

        pos_embed = self.pos_ln(pos_embed)
        if patch_images is not None:
            image_pos_embed = self.image_pos_ln(image_pos_embed)
            pos_embed = torch.cat([image_pos_embed, pos_embed], dim=1)
        if patch_images_2 is not None:
            image_pos_embed_2 = self.image_pos_ln(image_pos_embed_2)
            pos_embed = torch.cat([image_pos_embed_2, pos_embed], dim=1)

        pos_q = self.pos_q_linear(pos_embed).view(
            x.size(0), x.size(1), self.num_attention_heads, -1
        ).transpose(1, 2) * self.pos_scaling
        pos_k = self.pos_k_linear(pos_embed).view(
            x.size(0), x.size(1), self.num_attention_heads, -1
        ).transpose(1, 2)
        abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))

        # expand attention_mask
        if has_pads:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(~encoder_padding_mask, dtype=x.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # encoder layers
        for idx, layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states += (x,)
            self_attn_bias = abs_pos_bias.clone()
            self_attn_bias[:, :, -input_ids.size(1):, -input_ids.size(1):] += self.get_rel_pos_bias(input_ids, idx)
            if patch_images_2 is not None:
                self_attn_bias[:, :, :image_num_patches_2, :image_num_patches_2] += \
                    self.get_image_rel_pos_bias(image_position_ids_2, idx)
                self_attn_bias[:, :, image_num_patches_2:image_num_patches_2 + image_num_patches,
                image_num_patches_2:image_num_patches_2 + image_num_patches] += \
                    self.get_image_rel_pos_bias(image_position_ids, idx)
            elif patch_images is not None:
                self_attn_bias[:, :, :x.size(1) - input_ids.size(1), :x.size(1) - input_ids.size(1)] += \
                    self.get_image_rel_pos_bias(image_position_ids, idx)
            self_attn_bias = self_attn_bias.reshape(-1, x.size(1), x.size(1))

            hidden_outputs = layer(x, attention_mask if has_pads else None, attn_bias=self_attn_bias, output_attentions=output_attentions)
            x = hidden_outputs[0]

            if output_attentions:
                attention = hidden_outputs[1]
                all_attentions = all_attentions + (attention,)

        if output_hidden_states:
            encoder_states += (x,)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        return OFAEncoderOutput(
            last_hidden_state=x,
            padding_mask=encoder_padding_mask,
            hidden_states=encoder_states,
            attentions=all_attentions,
            position_embedding=pos_embed,
        )


class OFADecoder(OFAPreTrainedModel):
    r"""
    OFA decoder consisting of layers of [`OFADecoderLayer`]

    Args:
        config: OFAConfig
        embed_tokens (`nn.Embedding`, *optional*): output embedding
    """

    def __init__(self, config: OFAConfig, embed_tokens: Optional[nn.Embedding] = None, output_projection=None):
        super().__init__(config)
        self.dropout = nn.Dropout(config.dropout)
        self.decoder_layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        self._future_mask = torch.empty(0)
        self.share_input_output_embed = config.share_decoder_input_output_embed
        self.num_attention_heads = config.decoder_attention_heads

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        self.embed_dim = config.d_model
        self.output_embed_dim = config.d_model

        self.layers = nn.ModuleList([OFADecoderLayer(config) for _ in range(config.decoder_layers)])
        if config.layernorm_embedding:
            self.layernorm_embedding = LayerNorm(self.embed_dim)
        else:
            self.layernorm_embedding = None

        self.window_size = config.code_image_size // 8

        self.embed_positions = Embedding(self.max_target_positions + 2, self.embed_dim)
        self.embed_image_positions = Embedding(config.image_bucket_size**2 + 1, self.embed_dim)
        self.pos_ln = LayerNorm(self.embed_dim)
        self.image_pos_ln = LayerNorm(self.embed_dim)
        self.pos_scaling = float(self.embed_dim / self.num_attention_heads * config.attn_scale_factor) ** -0.5
        self.self_pos_q_linear = nn.Linear(self.embed_dim, self.embed_dim)
        self.self_pos_k_linear = nn.Linear(self.embed_dim, self.embed_dim)
        self.cross_pos_q_linear = nn.Linear(self.embed_dim, self.embed_dim)
        self.cross_pos_k_linear = nn.Linear(self.embed_dim, self.embed_dim)

        if config.code_layernorm_embedding:
            self.code_layernorm_embedding = LayerNorm(self.embed_dim)
        else:
            self.code_layernorm_embedding = None

        if self.decoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])

        dpr = [x.item() for x in torch.linspace(0, config.decoder_drop_path_rate, config.decoder_layers)]
        self.layers.extend([OFADecoderLayer(config, drop_path_rate=dpr[i]) for i in range(config.decoder_layers)])
        self.num_layers = len(self.layers)

        if config.decoder_normalize_before:
            self.layer_norm = LayerNorm(self.embed_dim)
        else:
            self.layer_norm = None

        self.adaptive_softmax = None
        self.output_projection = output_projection
        if self.output_projection is None:
            self.build_output_projection(config)

        self.token_bucket_size = config.token_bucket_size
        token_num_rel_dis = 2 * config.token_bucket_size - 1
        token_rp_bucket = make_token_bucket_position(config.token_bucket_size)
        self.token_rel_pos_table_list = nn.ModuleList(
            [
                Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True)
                for _ in range(config.decoder_layers)
            ]
        )

        self.image_bucket_size = config.image_bucket_size
        image_num_rel_dis = (2 * config.image_bucket_size - 1) * (2 * config.image_bucket_size - 1) + 3
        image_rp_bucket = make_image_bucket_position(config.image_bucket_size, image_num_rel_dis)
        image_position_idx = torch.arange(self.window_size).unsqueeze(0).expand(self.window_size, self.window_size) + \
                             torch.arange(self.window_size).unsqueeze(1) * config.image_bucket_size + 1
        image_position_idx = torch.cat([torch.tensor([0]), image_position_idx.view(-1)])
        image_position_idx = torch.cat([image_position_idx, torch.tensor([1024] * 768)])
        self.image_rel_pos_table_list = nn.ModuleList(
            [
                Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True)
                for _ in range(config.decoder_layers)
            ]
        )

        self.register_buffer("token_rp_bucket", token_rp_bucket)
        self.register_buffer("image_rp_bucket", image_rp_bucket)
        self.register_buffer("image_position_idx", image_position_idx)
        self.entangle_position_embedding = config.entangle_position_embedding

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def build_output_projection(self, config):
        if self.share_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, config.vocab_size, bias=False
            )
            nn.init.normal_(self.output_projection.weight, mean=0, std=self.output_embed_dim**-0.5)

    def get_rel_pos_bias(self, x, idx):
        r"""
        Get the relative positional bias of the text, for attention.
        """

        seq_len = x.size(1)
        rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
        values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight)
        values = values.permute([2, 0, 1])
        return values.contiguous()

    def get_image_rel_pos_bias(self, x, idx):
        r"""
        Get the relative positional bias of the image, for attention.
        """

        seq_len = x.size(1)
        image_position_idx = self.image_position_idx[:seq_len]
        rp_bucket = self.image_rp_bucket[image_position_idx][:, image_position_idx]
        values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight)
        values = values.permute(2, 0, 1)
        return values

    def get_pos_info(self, tgt_pos_embed, src_pos_embed=None, use_image=False):
        r"""
        Get the positional information.

        Args:
            tgt_pos_embed (`torch.FloatTensor` of shape `(bsz, tgt_len, embed_dim)`):
                the target-side positional embeddings.
            src_pos_embed (`torch.FloatTensor` of shape `(bsz, src_len, embed_dim)`, *optional*):
                the source-side positional embeddings.
            use_image (`bool`): whether to use image.

        Returns:
            abs_pos_bias (`torch.FloatTensor` of shape `(bsz, src_len, tgt_len, src_len)`):
                absolute positional bias for attention.
        """

        batch_size = tgt_pos_embed.size(0)
        tgt_len = tgt_pos_embed.size(1)
        tgt_pos_embed = self.image_pos_ln(tgt_pos_embed) if use_image else self.pos_ln(tgt_pos_embed)

        if src_pos_embed is not None:
            src_len = src_pos_embed.size(1)
            pos_q = self.cross_pos_q_linear(tgt_pos_embed).view(
                batch_size, tgt_len, self.num_attention_heads, -1
            ).transpose(1, 2) * self.pos_scaling
            pos_k = self.cross_pos_k_linear(src_pos_embed).view(
                batch_size, src_len, self.num_attention_heads, -1
            ).transpose(1, 2)
        else:
            src_len = tgt_pos_embed.size(1)
            pos_q = self.self_pos_q_linear(tgt_pos_embed).view(
                batch_size, tgt_len, self.num_attention_heads, -1
            ).transpose(1, 2) * self.pos_scaling
            pos_k = self.self_pos_k_linear(tgt_pos_embed).view(
                batch_size, src_len, self.num_attention_heads, -1
            ).transpose(1, 2)
        abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))

        return abs_pos_bias

    def get_input_embeddings(self):
        r"""
        Get the input embeddings
        """
        return self.embed_tokens

    def set_input_embeddings(self, value):
        r"""
        Set the weights of the embeddings with the given tensor.
        """
        self.embed_tokens = value

    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, dtype, past_key_values_length):
        r"""
        Create causal mask for unidirectional decoding.
        [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        """
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape, dtype, past_key_values_length=past_key_values_length
            ).to(self.device)

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, dtype, tgt_len=input_shape[-1])
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        if self.embed_positions is None:
            return self.max_target_positions
        return self.max_target_positions

    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Get normalized probabilities (or log probs) from a net's output."""
        return self.get_normalized_probs_scriptable(net_output, log_probs, sample)

    def get_normalized_probs_scriptable(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Get normalized probabilities (or log probs) from a net's output."""

        if hasattr(self, "adaptive_softmax") and self.adaptive_softmax is not None:
            if sample is not None:
                assert "target" in sample
                target = sample["target"]
            else:
                target = None
            out = self.adaptive_softmax.get_log_prob(net_output[0], target=target)
            return out.exp_() if not log_probs else out

        logits = net_output[0]
        if log_probs:
            return F.log_softmax(logits, dim=-1)
        else:
            return F.softmax(logits, dim=-1)

    def reorder_incremental_state_scripting(
        self,
        # incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
        past_key_values: Optional[torch.Tensor],
        new_order: Tensor,
    ):
        """Main entry point for reordering the incremental state.

        Due to limitations in TorchScript, we call this function in
        :class:`fairseq.sequence_generator.SequenceGenerator` instead of
        calling :func:`reorder_incremental_state` directly.
        """
        input_buffer = past_key_values
        new_past_key_values = []
        if input_buffer is not None:
            for input_buffer_k in input_buffer:
                new_input_buffer_k = []
                for input in input_buffer_k:
                    if input is None:
                        input = None
                    else:
                        input = input.index_select(0, new_order)
                    new_input_buffer_k.append(input)
                new_past_key_values.append(new_input_buffer_k)
        return new_past_key_values

    def forward(
        self,
        input_ids: torch.Tensor = None,
        attention_mask: torch.Tensor = None,
        encoder_hidden_states: torch.Tensor = None,
        encoder_attention_mask: torch.Tensor = None,
        code_masks: Optional[torch.Tensor] = None,
        src_pos_embed: torch.Tensor = None,
        past_key_values: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
    ):
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(bsz, seq_len)`): indices of the sequence in the vocabulary.
            attention_mask (`torch.Tensor` of shape `(bsz, seq_len)`): mask to avoid attention on padding tokens.
            encoder_hidden_states (`torch.FloatTensor` of shape `(bsz, seq_len, hidden)`): the last hidden state of the encoder.
            encoder_attention_mask (`torch.Tensor` of shape `(bsz, seq_len)`): the padding mask of the source side.
            code_masks (`torch.Tensor` of shape `(bsz, seq_len)`): masks only for code generation.
            src_pos_embed (`torch.FloatTensor` of shape `(bsz, seq_len, hidden)`): the positional embeddings of the source side.
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(bsz, num_heads, tgt_len, head_size)`) and 2 additional tensors of
                shape `(bsz, num_heads, src_len, head_size)`.
            use_cache (`bool`): whether to use cache for faster inference.
            output_attentions (`bool`): whether to output attention weights.
            output_hidden_states (`bool`): whether to output hidden states.

        Returns:
            BaseModelOutputWithPastAndCrossAttentions or a plain tuple:
                last_hidden_state (`torch.FloatTensor` of shape `(bsz, seq_len, hidden)`): the last hidden states.
                past_key_values (`tuple(tuple(torch.FloatTensor)): past keys and values for faster inference.
                hidden_states (`tuple(torch.FloatTensor)`): hidden states of all layers.
                attentions (`tuple(torch.FloatTensor)): self attention weights of all layers.
                cross_attentions (`tuple(torch.FloatTensor)): cross attention weights of all layers.
        """

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if past_key_values is not None and len(past_key_values)>0:
            size = past_key_values[0][0].size()
            bsz, tgt_len = size[0], size[-2] + 1
            token_position_idx = torch.arange(tgt_len, device=input_ids.device).expand([bsz, tgt_len]).contiguous()
        else:
            bsz, tgt_len = input_ids.shape
            token_position_idx = new_arange(input_ids)
        tgt_pos_embed = self.embed_positions(token_position_idx)
        if code_masks is not None and torch.any(code_masks):
            image_position_idx = self.image_position_idx[:input_ids.size(1)].unsqueeze(0).expand(bsz, tgt_len)
            tgt_pos_embed[code_masks] = self.embed_image_positions(image_position_idx)[code_masks]

        # self attn position bias
        self_abs_pos_bias = self.get_pos_info(tgt_pos_embed, use_image=False)
        if code_masks is not None and torch.any(code_masks):
            self_image_abs_pos_bias = self.get_pos_info(tgt_pos_embed, use_image=True)
            self_abs_pos_bias[code_masks] = self_image_abs_pos_bias[code_masks]
        # cross attn position bias
        cross_abs_pos_bias = self.get_pos_info(tgt_pos_embed, src_pos_embed=src_pos_embed)
        if code_masks is not None and torch.any(code_masks):
            cross_image_abs_pos_bias = self.get_pos_info(tgt_pos_embed, src_pos_embed=src_pos_embed, use_image=True)
            cross_abs_pos_bias[code_masks] = cross_image_abs_pos_bias[code_masks]
        cross_abs_pos_bias = cross_abs_pos_bias.reshape(-1, *cross_abs_pos_bias.size()[-2:])

        all_prev_output_tokens = input_ids.clone()
        if past_key_values is not None and len(past_key_values)>0:
            input_ids = input_ids[:, -1:]
            cross_abs_pos_bias = cross_abs_pos_bias[:, -1:, :]
            tgt_pos_embed = tgt_pos_embed[:, -1:, :]

        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(input_ids)


        if self.entangle_position_embedding and not self.disable_entangle:
            x += tgt_pos_embed

        if self.layernorm_embedding is not None:
            if code_masks is None or not code_masks.any() or not self.code_layernorm_embedding:
                x = self.layernorm_embedding(x)
            elif code_masks is not None and code_masks.all():
                x = self.code_layernorm_embedding(x)
            else:
                x[~code_masks] = self.layernorm_embedding(x[~code_masks])
                x[code_masks] = self.code_layernorm_embedding(x[code_masks])

        hidden_states = self.dropout(x)

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None and len(past_key_values)>0 else 0

        shape, dtype = input_ids.shape, hidden_states.dtype
        attention_mask = self._prepare_decoder_attention_mask(attention_mask, shape, dtype, past_key_values_length)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
        next_decoder_cache = () if use_cache else None

        # decoder layers
        for idx, layer in enumerate(self.layers):
            # add hidden states from the last decoder layer
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None and len(past_key_values)>0 else None

            self_attn_bias = self_abs_pos_bias.clone()
            if code_masks is None or not code_masks.any():
                self_attn_bias += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            elif code_masks is not None and code_masks.all():
                self_attn_bias += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            else:
                self_attn_bias[~code_masks] += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
                self_attn_bias[code_masks] += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0)
            self_attn_bias = self_attn_bias.reshape(-1, *self_attn_bias.size()[-2:])
            if past_key_value is not None and len(past_key_values)>0 :
                self_attn_bias = self_attn_bias[:, -1:, :]

            layer_outputs = layer(
                hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                self_attn_bias=self_attn_bias,
                cross_attn_bias=cross_abs_pos_bias,
            )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None

        if self.layer_norm is not None:
            hidden_states = self.layer_norm(hidden_states)

        if self.output_projection is not None:
            hidden_states = self.output_projection(hidden_states)

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


@add_start_docstrings(
    "The bare OFA Model outputting raw hidden-states without any specific head on top.",
    OFA_START_DOCSTRING,
)
class OFAModel(OFAPreTrainedModel):
    r"""
    The OFA model built with an encoder and a decoder only, without any classification head.

    Args:
        config (OFAConfig): OFA configuration.
    """

    def __init__(self, config: OFAConfig,  **kwargs):
        super().__init__(config)
        self.disable_entangle = getattr(kwargs,'disable_entangle',False)

        self.padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        shared = nn.Embedding(vocab_size, config.d_model, self.padding_idx)

        self.encoder = OFAEncoder(config, shared)
        self.decoder = OFADecoder(config, shared)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        r"""
        Retrieve input embeddings.
        """
        return self.encoder.get_input_embeddings()

    def set_input_embeddings(self, value):
        r"""
        Set values for input embeddings
        """
        shared = value
        self.encoder.embed_tokens = shared
        self.decoder.embed_tokens = shared

    def get_encoder(self):
        r"""
        Retrieve the encoder
        """
        return self.encoder

    def get_decoder(self):
        r"""
        Retrieve the decoder
        """
        return self.decoder

    @add_start_docstrings_to_model_forward(OFA_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        processor_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=Seq2SeqModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )

    def max_decoder_positions(self):
        """Maximum length supported by the decoder."""
        return self.decoder.max_positions()

    def get_normalized_probs(
            self,
            net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
            log_probs: bool,
            sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Get normalized probabilities (or log probs) from a net's output."""
        return self.get_normalized_probs_scriptable(net_output, log_probs, sample)


    def get_normalized_probs_scriptable(
            self,
            net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
            log_probs: bool,
            sample: Optional[Dict[str, Tensor]] = None,
    ):
        """Scriptable helper function for get_normalized_probs in ~BaseFairseqModel"""
        if hasattr(self, "decoder"):
            return self.decoder.get_normalized_probs(net_output, log_probs, sample)
        elif torch.is_tensor(net_output):
            # syntactic sugar for simple models which don't have a decoder
            # (e.g., the classification tutorial)
            logits = net_output.float()
            if log_probs:
                return F.log_softmax(logits, dim=-1)
            else:
                return F.softmax(logits, dim=-1)
        raise NotImplementedError

    def forward(
            self,
            input_ids=None,
            patch_images=None,
            patch_images_2=None,
            patch_masks=None,
            token_embeddings=None,
            sample_patch_num=None,
            decoder_input_ids=None,
            code_masks=None,
            attention_mask=None,
            encoder_outputs=None,
            past_key_values=None,
            use_cache=False,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=False
    ):
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(bsz, seq_len)`):
                indices of input sequence tokens in the vocabular, and padding will be ignored by default;

                indices can be obtained using [`~OFATokenizer`].

            patch_images (`torch.FloatTensor` of shape `(bsz, 3, height, width)`):
                the resized image, which are transformed by the default operations.
            patch_images_2 (`torch.FloatTensor` of shape `(bsz, 3, height, width)`):
                the second (if it exists) image.
            patch_masks (`torch.BoolTensor`): the patches to be masked.
            token_embeddings (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`): token embeddings.
            sample_patch_num (`int`): the number of patches to sample.
            decoder_input_ids (`torch.LongTensor` of shape `(bsz, seq_len)`): indices of the sequence in the vocabulary.
            code_masks (`torch.Tensor` of shape `(bsz, seq_len)`): masks only for code generation.
            attention_mask (`torch.Tensor` of shape `(bsz, seq_len)`): attention mask for decoding.
            encoder_outputs (`OFAEncoderOutput`):
                encoder outputs with hidden states, positional embeddings, and padding masks.
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(bsz, num_heads, tgt_len, head_size)`) and 2 additional tensors of
                shape `(bsz, num_heads, src_len, head_size)`.
            use_cache (`bool`): whether to use cache for faster inference.
            output_attentions (`bool`): whether to output attention weights.
            output_hidden_states (`bool`): whether to output hidden states.
            return_dict (`bool`): unused. Keep it for generation only.

        Returns:
            Seq2SeqLMOutput:
                logits (`torch.FloatTensor` of shape `(bsz, seq_len, hidden)`): the last decoder hidden states.
                past_key_values (`tuple(tuple(torch.FloatTensor)): past keys and values for faster inference.
                decoder_hidden_states (`tuple(torch.FloatTensor)`): the decoder hidden states of all layers.
                decoder_attentions (`tuple(torch.FloatTensor)): the decoder self attention weights of all layers.
                cross_attentions (`tuple(torch.FloatTensor)): cross attention weights of all layers.
                encoder_last_hidden_state (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`):
                    the encoder last hidden state.
                encoder_hidden_states (`torch.FloatTensor` of shape `(bsz, seq_len, embed_dim)`):
                    the encoder states of all layers including the embeddings.
                encoder_attentions (`torch.FloatTensor` of shape `(bsz, num_heads, seq_len, seq_len)`):
                    the encoder attention weights of all layers.
        """

        output_attentions = output_attentions if output_attentions else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                patch_images=patch_images,
                patch_images_2=patch_images_2,
                patch_masks=patch_masks,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                token_embeddings=token_embeddings,
                sample_patch_num=sample_patch_num,
            )

        # if decoder_input_ids.eq(self.config.pad_token_id).any():
        #     attention_mask = decoder_input_ids.eq(self.padding_idx)

        encoder_hidden_states = encoder_outputs.last_hidden_state
        if past_key_values is not None and len(past_key_values)>0:
            encoder_attention_mask = _expand_mask(
                ~encoder_outputs.padding_mask, encoder_hidden_states.dtype, decoder_input_ids[:, -1:].shape[-1]
            )
        else:
            encoder_attention_mask = _expand_mask(
                ~encoder_outputs.padding_mask, encoder_hidden_states.dtype, decoder_input_ids.shape[-1]
            )
        src_pos_embed = encoder_outputs.position_embedding

        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            code_masks=code_masks,
            src_pos_embed=src_pos_embed,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        return Seq2SeqLMOutput(
            logits=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids=None,
        past=None,
        attention_mask=None,
        code_masks=None,
        use_cache=False,
        encoder_outputs=None,
        **kwargs
    ):
        # if attention_mask is None:
        attention_mask = decoder_input_ids.new_ones(decoder_input_ids.shape)

        # cut decoder_input_ids if past is used
        # if past is not None:
        #     decoder_input_ids = decoder_input_ids[:, -1:]

        return {
            "input_ids": None,
            "patch_images": None,
            "patch_images_2": None,
            "patch_masks": None,
            "token_embeddings": None,
            "sample_patch_num": None,
            "attention_mask": attention_mask,
            "encoder_outputs": encoder_outputs,
            "past_key_values": past,
            "decoder_input_ids": decoder_input_ids,
            "code_masks": code_masks,
            "use_cache": use_cache,
        }

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

    def _prepare_encoder_decoder_kwargs_for_generation(
        self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None
    ):
        # 1. get encoder
        encoder = self.get_encoder()

        # 2. prepare encoder args and encoder kwargs from model kwargs
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache", "attention_mask"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }

        if encoder_kwargs.get("patch_masks") is None:
            encoder_kwargs["patch_masks"] = torch.ones((len(inputs_tensor), 1), dtype=torch.bool, device=inputs_tensor.device)

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.main_input_name
        encoder_kwargs[model_input_name] = inputs_tensor
        model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)
        model_kwargs["attention_mask"] = None

        return model_kwargs

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past

    @staticmethod
    def _expand_inputs_for_generation(
        input_ids: torch.LongTensor,
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        attention_mask: Optional[torch.LongTensor] = None,
        encoder_outputs: Optional[ModelOutput] = None,
        **model_kwargs,
    ):
        expanded_return_idx = (
            torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
        )
        input_ids = input_ids.index_select(0, expanded_return_idx)

        if "token_type_ids" in model_kwargs:
            token_type_ids = model_kwargs["token_type_ids"]
            model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)

        if attention_mask is not None:
            model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)

        if is_encoder_decoder:
            if encoder_outputs is None:
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
            encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
                0, expanded_return_idx.to(encoder_outputs.last_hidden_state.device)
            )
            encoder_outputs["position_embedding"] = encoder_outputs.position_embedding.index_select(
                0, expanded_return_idx.to(encoder_outputs.position_embedding.device)
            )
            encoder_outputs["padding_mask"] = encoder_outputs.padding_mask.index_select(
                0, expanded_return_idx.to(encoder_outputs.padding_mask.device)
            )
            model_kwargs["encoder_outputs"] = encoder_outputs
        return input_ids, model_kwargs


class OFAModelForCaption(OFAModel):

    def forward(
            self,
            input_ids=None,
            patch_images=None,
            patch_images_2=None,
            patch_masks=None,
            token_embeddings=None,
            sample_patch_num=None,
            decoder_input_ids=None,
            code_masks=None,
            attention_mask=None,
            encoder_outputs=None,
            past_key_values=None,
            use_cache=False,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=False,
            return_loss=False
    ):

        output_attentions = output_attentions if output_attentions else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                patch_images=patch_images,
                patch_images_2=patch_images_2,
                patch_masks=patch_masks,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                token_embeddings=token_embeddings,
                sample_patch_num=sample_patch_num,
            )

        # if decoder_input_ids.eq(self.config.pad_token_id).any():
        #     attention_mask = decoder_input_ids.eq(self.padding_idx)

        encoder_hidden_states = encoder_outputs.last_hidden_state
        if past_key_values is not None and len(past_key_values)>0:
            encoder_attention_mask = _expand_mask(
                ~encoder_outputs.padding_mask, encoder_hidden_states.dtype, decoder_input_ids[:, -1:].shape[-1]
            )
        else:
            encoder_attention_mask = _expand_mask(
                ~encoder_outputs.padding_mask, encoder_hidden_states.dtype, decoder_input_ids.shape[-1]
            )
        src_pos_embed = encoder_outputs.position_embedding

        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            code_masks=code_masks,
            src_pos_embed=src_pos_embed,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        loss = None
        if return_loss:
            lm_logits = decoder_outputs.last_hidden_state
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = decoder_input_ids[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )