|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" OFA model configuration""" |
|
import warnings |
|
from transformers import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
OFA_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"OFA-Sys/OFA-tiny": "https://huggingface.co/OFA-Sys/OFA-tiny/blob/main/config.json", |
|
"OFA-Sys/OFA-medium": "https://huggingface.co/OFA-Sys/OFA-medium/blob/main/config.json", |
|
"OFA-Sys/OFA-base": "https://huggingface.co/OFA-Sys/OFA-base/blob/main/config.json", |
|
"OFA-Sys/OFA-large": "https://huggingface.co/OFA-Sys/OFA-large/blob/main/config.json", |
|
|
|
} |
|
|
|
|
|
class OFAConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`~OFAModel`]. It is used to instantiate an OFA |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the OFA [ofa-base](https://huggingface.co/ofa-base) |
|
architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50265): |
|
Vocabulary size of the OFA model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`~OFAModel`] or [`~TFOFAModel`]. |
|
d_model (`int`, *optional*, defaults to 1024): |
|
Dimension of the layers and the pooler layer. |
|
encoder_layers (`int`, *optional*, defaults to 12): |
|
Number of encoder layers. |
|
decoder_layers (`int`, *optional*, defaults to 12): |
|
Number of decoder layers. |
|
encoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
decoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimension of the "intermediate" (often named feed-forward) layer in decoder. |
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimension of the "intermediate" (often named feed-forward) layer in decoder. |
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
activation_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for activations inside the fully connected layer. |
|
classifier_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for classifier. |
|
max_position_embeddings (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
init_std (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
encoder_layerdrop: (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
decoder_layerdrop: (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
""" |
|
|
|
model_type = "ofa" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=59457, |
|
max_position_embeddings=1024, |
|
encoder_layers=4, |
|
encoder_ffn_dim=512 * 4, |
|
encoder_attention_heads=8, |
|
decoder_layers=4, |
|
decoder_ffn_dim=512 * 4, |
|
decoder_attention_heads=8, |
|
encoder_layerdrop=0.0, |
|
decoder_layerdrop=0.0, |
|
use_cache=True, |
|
is_encoder_decoder=True, |
|
activation_function="gelu", |
|
d_model=512, |
|
dropout=0.1, |
|
attention_dropout=0.0, |
|
activation_dropout=0.0, |
|
init_std=0.02, |
|
classifier_dropout=0.0, |
|
scale_embedding=False, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
decoder_start_token_id=0, |
|
eos_token_id=2, |
|
forced_eos_token_id=2, |
|
encoder_normalize_before=True, |
|
decoder_normalize_before=True, |
|
normformer=True, |
|
encoder_drop_path_rate=0.0, |
|
decoder_drop_path_rate=0.0, |
|
layernorm_embedding=True, |
|
patch_layernorm_embedding=True, |
|
resnet_type="resnet101", |
|
resnet_model_path=None, |
|
resnet_drop_path_rate=0.0, |
|
token_bucket_size=256, |
|
image_bucket_size=42, |
|
add_type_embedding=True, |
|
share_decoder_input_output_embed=True, |
|
attn_scale_factor=2.0, |
|
code_layernorm_embedding=True, |
|
code_image_size=128, |
|
entangle_position_embedding=False, |
|
**kwargs |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.d_model = d_model |
|
self.encoder_ffn_dim = encoder_ffn_dim |
|
self.encoder_layers = encoder_layers |
|
self.encoder_attention_heads = encoder_attention_heads |
|
self.decoder_ffn_dim = decoder_ffn_dim |
|
self.decoder_layers = decoder_layers |
|
self.decoder_attention_heads = decoder_attention_heads |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.activation_function = activation_function |
|
self.init_std = init_std |
|
self.encoder_layerdrop = encoder_layerdrop |
|
self.decoder_layerdrop = decoder_layerdrop |
|
self.classifier_dropout = classifier_dropout |
|
self.use_cache = use_cache |
|
self.num_hidden_layers = encoder_layers |
|
self.scale_embedding = scale_embedding |
|
self.encoder_normalize_before = encoder_normalize_before |
|
self.decoder_normalize_before = decoder_normalize_before |
|
self.normformer = normformer |
|
self.encoder_drop_path_rate = encoder_drop_path_rate |
|
self.decoder_drop_path_rate = decoder_drop_path_rate |
|
self.layernorm_embedding = layernorm_embedding |
|
self.patch_layernorm_embedding = patch_layernorm_embedding |
|
self.resnet_type = resnet_type |
|
self.resnet_model_path = resnet_model_path |
|
self.resnet_drop_path_rate = resnet_drop_path_rate |
|
self.token_bucket_size = token_bucket_size |
|
self.image_bucket_size = image_bucket_size |
|
self.add_type_embedding = add_type_embedding |
|
self.share_decoder_input_output_embed = share_decoder_input_output_embed |
|
self.attn_scale_factor = attn_scale_factor |
|
self.code_layernorm_embedding = code_layernorm_embedding |
|
self.code_image_size = code_image_size |
|
self.entangle_position_embedding = entangle_position_embedding |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
is_encoder_decoder=is_encoder_decoder, |
|
decoder_start_token_id=bos_token_id, |
|
forced_eos_token_id=forced_eos_token_id, |
|
**kwargs, |
|
) |
|
|
|
|
|
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): |
|
self.forced_bos_token_id = self.bos_token_id |
|
warnings.warn( |
|
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " |
|
"The config can simply be saved and uploaded again to be fixed." |
|
) |
|
|