Spaces:
Runtime error
Runtime error
Create caption_generator.py
Browse files- caption_generator.py +216 -0
caption_generator.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
python caption_generator.py /path/to/input/image.jpg /path/to/output/directory --caption_type "Descriptive" --caption_length "long" --extra_options 0 2 5 --name_input "John"
|
3 |
+
'''
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
from pathlib import Path
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
|
10 |
+
from PIL import Image
|
11 |
+
import torchvision.transforms.functional as TVF
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
15 |
+
CHECKPOINT_PATH = Path("cgrkzexw-599808")
|
16 |
+
|
17 |
+
# Extra options with IDs for easy selection
|
18 |
+
EXTRA_OPTIONS = [
|
19 |
+
"If there is a person/character in the image you must refer to them as {name}.",
|
20 |
+
"Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
|
21 |
+
"Include information about lighting.",
|
22 |
+
"Include information about camera angle.",
|
23 |
+
"Include information about whether there is a watermark or not.",
|
24 |
+
"Include information about whether there are JPEG artifacts or not.",
|
25 |
+
"If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
|
26 |
+
"Do NOT include anything sexual; keep it PG.",
|
27 |
+
"Do NOT mention the image's resolution.",
|
28 |
+
"You MUST include information about the subjective aesthetic quality of the image from low to very high.",
|
29 |
+
"Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
|
30 |
+
"Do NOT mention any text that is in the image.",
|
31 |
+
"Specify the depth of field and whether the background is in focus or blurred.",
|
32 |
+
"If applicable, mention the likely use of artificial or natural lighting sources.",
|
33 |
+
"Do NOT use any ambiguous language.",
|
34 |
+
"Include whether the image is sfw, suggestive, or nsfw.",
|
35 |
+
"ONLY describe the most important elements of the image."
|
36 |
+
]
|
37 |
+
|
38 |
+
# Image Adapter
|
39 |
+
class ImageAdapter(nn.Module):
|
40 |
+
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
|
41 |
+
super().__init__()
|
42 |
+
self.deep_extract = deep_extract
|
43 |
+
if self.deep_extract:
|
44 |
+
input_features = input_features * 5
|
45 |
+
self.linear1 = nn.Linear(input_features, output_features)
|
46 |
+
self.activation = nn.GELU()
|
47 |
+
self.linear2 = nn.Linear(output_features, output_features)
|
48 |
+
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
|
49 |
+
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
|
50 |
+
self.other_tokens = nn.Embedding(3, output_features)
|
51 |
+
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)
|
52 |
+
|
53 |
+
def forward(self, vision_outputs: torch.Tensor):
|
54 |
+
if self.deep_extract:
|
55 |
+
x = torch.concat((vision_outputs[-2], vision_outputs[3], vision_outputs[7], vision_outputs[13], vision_outputs[20]), dim=-1)
|
56 |
+
else:
|
57 |
+
x = vision_outputs[-2]
|
58 |
+
x = self.ln1(x)
|
59 |
+
if self.pos_emb is not None:
|
60 |
+
x = x + self.pos_emb
|
61 |
+
x = self.linear1(x)
|
62 |
+
x = self.activation(x)
|
63 |
+
x = self.linear2(x)
|
64 |
+
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
|
65 |
+
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
|
66 |
+
return x
|
67 |
+
|
68 |
+
def get_eot_embedding(self):
|
69 |
+
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
|
70 |
+
|
71 |
+
# Load models
|
72 |
+
def load_models():
|
73 |
+
print("Loading CLIP")
|
74 |
+
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
|
75 |
+
clip_model = AutoModel.from_pretrained(CLIP_PATH)
|
76 |
+
clip_model = clip_model.vision_model
|
77 |
+
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
|
78 |
+
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
|
79 |
+
clip_model.load_state_dict(checkpoint)
|
80 |
+
clip_model.eval()
|
81 |
+
clip_model.requires_grad_(False)
|
82 |
+
clip_model.to("cuda")
|
83 |
+
|
84 |
+
print("Loading tokenizer")
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
|
86 |
+
|
87 |
+
print("Loading LLM")
|
88 |
+
text_model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16)
|
89 |
+
text_model.eval()
|
90 |
+
|
91 |
+
print("Loading image adapter")
|
92 |
+
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
|
93 |
+
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
|
94 |
+
image_adapter.eval()
|
95 |
+
image_adapter.to("cuda")
|
96 |
+
|
97 |
+
return clip_processor, clip_model, tokenizer, text_model, image_adapter
|
98 |
+
|
99 |
+
# Generate caption
|
100 |
+
@torch.no_grad()
|
101 |
+
def generate_caption(input_image: Image.Image, caption_type: str, caption_length: str | int, extra_options: list[str], name_input: str, custom_prompt: str, clip_processor, clip_model, tokenizer, text_model, image_adapter):
|
102 |
+
torch.cuda.empty_cache()
|
103 |
+
|
104 |
+
# Build prompt
|
105 |
+
length = None if caption_length == "any" else caption_length
|
106 |
+
if isinstance(length, str):
|
107 |
+
try:
|
108 |
+
length = int(length)
|
109 |
+
except ValueError:
|
110 |
+
pass
|
111 |
+
map_idx = 0 if length is None else 1 if isinstance(length, int) else 2
|
112 |
+
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
|
113 |
+
|
114 |
+
if len(extra_options) > 0:
|
115 |
+
prompt_str += " " + " ".join(extra_options)
|
116 |
+
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
|
117 |
+
|
118 |
+
if custom_prompt.strip() != "":
|
119 |
+
prompt_str = custom_prompt.strip()
|
120 |
+
|
121 |
+
# Preprocess image
|
122 |
+
image = input_image.resize((384, 384), Image.LANCZOS)
|
123 |
+
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
|
124 |
+
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
|
125 |
+
pixel_values = pixel_values.to('cuda')
|
126 |
+
|
127 |
+
# Embed image
|
128 |
+
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
129 |
+
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
|
130 |
+
embedded_images = image_adapter(vision_outputs.hidden_states)
|
131 |
+
embedded_images = embedded_images.to('cuda')
|
132 |
+
|
133 |
+
# Build conversation
|
134 |
+
convo = [
|
135 |
+
{"role": "system", "content": "You are a helpful image captioner."},
|
136 |
+
{"role": "user", "content": prompt_str},
|
137 |
+
]
|
138 |
+
convo_string = tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
|
139 |
+
convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False)
|
140 |
+
prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False)
|
141 |
+
convo_tokens = convo_tokens.squeeze(0)
|
142 |
+
prompt_tokens = prompt_tokens.squeeze(0)
|
143 |
+
|
144 |
+
# Calculate where to inject the image
|
145 |
+
eot_id_indices = (convo_tokens == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist()
|
146 |
+
preamble_len = eot_id_indices[1] - prompt_tokens.shape[0]
|
147 |
+
|
148 |
+
# Embed the tokens
|
149 |
+
convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to('cuda'))
|
150 |
+
|
151 |
+
# Construct the input
|
152 |
+
input_embeds = torch.cat([
|
153 |
+
convo_embeds[:, :preamble_len],
|
154 |
+
embedded_images.to(dtype=convo_embeds.dtype),
|
155 |
+
convo_embeds[:, preamble_len:],
|
156 |
+
], dim=1).to('cuda')
|
157 |
+
|
158 |
+
input_ids = torch.cat([
|
159 |
+
convo_tokens[:preamble_len].unsqueeze(0),
|
160 |
+
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
161 |
+
convo_tokens[preamble_len:].unsqueeze(0),
|
162 |
+
], dim=1).to('cuda')
|
163 |
+
attention_mask = torch.ones_like(input_ids)
|
164 |
+
|
165 |
+
# Generate caption
|
166 |
+
generate_ids = text_model.generate(input_ids, inputs_embeds=input_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None)
|
167 |
+
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
168 |
+
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
|
169 |
+
generate_ids = generate_ids[:, :-1]
|
170 |
+
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
171 |
+
|
172 |
+
return prompt_str, caption.strip()
|
173 |
+
|
174 |
+
# Main function
|
175 |
+
def main():
|
176 |
+
parser = argparse.ArgumentParser(description="Generate a caption for an image.")
|
177 |
+
parser.add_argument("input_image", type=str, help="Path to the input image")
|
178 |
+
parser.add_argument("output_path", type=str, help="Path to save the output caption and image")
|
179 |
+
parser.add_argument("--caption_type", type=str, default="Descriptive", choices=CAPTION_TYPE_MAP.keys(), help="Type of caption to generate")
|
180 |
+
parser.add_argument("--caption_length", type=str, default="long", help="Length of the caption")
|
181 |
+
parser.add_argument("--extra_options", nargs="*", type=int, default=[], help="Extra options for caption generation (provide IDs separated by spaces)")
|
182 |
+
parser.add_argument("--name_input", type=str, default="", help="Name of the person/character in the image (if applicable)")
|
183 |
+
parser.add_argument("--custom_prompt", type=str, default="", help="Custom prompt to override default settings")
|
184 |
+
args = parser.parse_args()
|
185 |
+
|
186 |
+
# Map extra option IDs to their corresponding strings
|
187 |
+
selected_extra_options = [EXTRA_OPTIONS[i] for i in args.extra_options]
|
188 |
+
|
189 |
+
# Load models
|
190 |
+
clip_processor, clip_model, tokenizer, text_model, image_adapter = load_models()
|
191 |
+
|
192 |
+
# Open the input image
|
193 |
+
input_image = Image.open(args.input_image)
|
194 |
+
|
195 |
+
# Generate caption
|
196 |
+
prompt_str, caption = generate_caption(input_image, args.caption_type, args.caption_length, selected_extra_options, args.name_input, args.custom_prompt, clip_processor, clip_model, tokenizer, text_model, image_adapter)
|
197 |
+
|
198 |
+
# Save caption and image
|
199 |
+
output_path = Path(args.output_path)
|
200 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
201 |
+
image_name = Path(args.input_image).name.replace(" ", "_")
|
202 |
+
output_image_path = output_path / image_name
|
203 |
+
input_image.save(output_image_path)
|
204 |
+
|
205 |
+
txt_file_path = output_path / f"{output_image_path.stem}.txt"
|
206 |
+
with open(txt_file_path, "w") as f:
|
207 |
+
f.write(f"Prompt: {prompt_str}\n\nCaption: {caption}")
|
208 |
+
|
209 |
+
print(f"Caption saved to {txt_file_path}")
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
# Print extra options with IDs for reference
|
213 |
+
print("Extra Options:")
|
214 |
+
for i, option in enumerate(EXTRA_OPTIONS):
|
215 |
+
print(f"{i}: {option}")
|
216 |
+
main()
|