Spaces:
Sleeping
Sleeping
# app.py (Final Version with gr.State for Robust State Management) | |
import gradio as gr | |
import tensorflow as tf | |
import pickle | |
import numpy as np | |
# --- 1. CONFIGURATION & MODEL LOADING --- | |
MAX_SEQ_LENGTH = 30 | |
print("--- App Starting Up ---") | |
print("Loading models and tokenizers...") | |
try: | |
successor_model = tf.keras.models.load_model('successor_model.h5') | |
with open('successor_model_tokenizers.pkl', 'rb') as f: | |
successor_tokenizers = pickle.load(f) | |
predecessor_model = tf.keras.models.load_model('predecessor_model.h5') | |
with open('predecessor_model_tokenizers.pkl', 'rb') as f: | |
predecessor_tokenizers = pickle.load(f) | |
print("Models and tokenizers loaded successfully.") | |
except Exception as e: | |
print(f"FATAL ERROR loading files: {e}") | |
successor_model, predecessor_model = None, None | |
# --- 2. THE CORE PREDICTION LOGIC --- | |
# This function is the same, but it will now receive its input from the reliable gr.State | |
def predict_next_state(model, tokenizers, current_state_dict): | |
if not model or not tokenizers or not current_state_dict: | |
return {"error": "Model or state is not loaded"}, "Error", "Error", "Error" | |
# Prepare input data from the state dictionary | |
input_data = { | |
'current_unit_name': [current_state_dict['unit_name']], | |
'current_analogy': [current_state_dict['analogy']], | |
'current_commentary': [current_state_dict['commentary']] | |
} | |
processed_input = {} | |
for col, text_list in input_data.items(): | |
sequences = tokenizers[col].texts_to_sequences(text_list) | |
padded_sequences = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=MAX_SEQ_LENGTH, padding='post') | |
processed_input[col] = padded_sequences | |
predictions = model.predict(processed_input) | |
# Decode prediction | |
target_texts = {} | |
output_cols = ['target_unit_name', 'target_analogy', 'target_commentary'] | |
for i, col in enumerate(output_cols): | |
pred_indices = np.argmax(predictions[i], axis=-1) | |
predicted_sequence = tokenizers[col].sequences_to_texts(pred_indices)[0] | |
clean_text = ' '.join([word for word in predicted_sequence.split() if word not in ['<oov>', 'end']]) | |
target_texts[col] = clean_text.strip() | |
print(f"Decoded Unit Name: {target_texts['target_unit_name']}") | |
# Create the new state dictionary | |
new_state = { | |
'unit_name': target_texts['target_unit_name'], | |
'analogy': target_texts['target_analogy'], | |
'commentary': target_texts['target_commentary'] | |
} | |
# Handle "Infinity" Sentinel | |
if "end of knowledge" in new_state['unit_name'].lower(): | |
direction = "larger" if model == successor_model else "smaller" | |
prefix = "Giga-" if direction == "larger" else "pico-" | |
new_state['unit_name'] = f"{prefix}{current_state_dict['unit_name']}" | |
new_state['analogy'] = "A procedurally generated unit beyond the AI's known universe." | |
new_state['commentary'] = "This represents a step into true infinity, where rules replace learned knowledge." | |
# Return the new state object and the values for the textboxes | |
return new_state, new_state['unit_name'], new_state['analogy'], new_state['commentary'] | |
# --- WRAPPER FUNCTIONS --- | |
# They now take the state dictionary as input and return the new state dictionary | |
def go_larger(current_state): | |
print("\n>>> 'Go Larger' button clicked. Using SUCCESSOR model.") | |
return predict_next_state(successor_model, successor_tokenizers, current_state) | |
def go_smaller(current_state): | |
print("\n>>> 'Go Smaller' button clicked. Using PREDECESSOR model.") | |
return predict_next_state(predecessor_model, predecessor_tokenizers, current_state) | |
# --- 3. THE GRADIO USER INTERFACE (RE-ARCHITECTED) --- | |
initial_state = { | |
"unit_name": "Byte", | |
"analogy": "a single character of text, like 'R'", | |
"commentary": "From binary choices, a building block is formed, ready to hold a single, recognizable symbol." | |
} | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as demo: | |
gr.Markdown("# 🤖 Digital Scale Explorer AI") | |
gr.Markdown("An AI trained from scratch to explore the infinite ladder of data sizes. Click the buttons to traverse the universe of data!") | |
# *** THIS IS THE KEY CHANGE *** | |
# Create an invisible component to reliably hold our state | |
app_state = gr.State(value=initial_state) | |
with gr.Row(): | |
unit_name_out = gr.Textbox(value=initial_state['unit_name'], label="Unit Name", interactive=False) | |
analogy_out = gr.Textbox(value=initial_state['analogy'], label="Analogy", lines=4, interactive=False) | |
commentary_out = gr.Textbox(value=initial_state['commentary'], label="AI Commentary", lines=3, interactive=False) | |
with gr.Row(): | |
smaller_btn = gr.Button("Go Smaller ⬇️", variant="secondary", size="lg") | |
larger_btn = gr.Button("Go Larger ⬆️", variant="primary", size="lg") | |
# --- The button clicks now use the app_state as their primary input and output --- | |
larger_btn.click( | |
fn=go_larger, | |
inputs=[app_state], # The INPUT is the reliable state object | |
# The OUTPUT is the new state object AND the values for the textboxes | |
outputs=[app_state, unit_name_out, analogy_out, commentary_out] | |
) | |
smaller_btn.click( | |
fn=go_smaller, | |
inputs=[app_state], # The INPUT is the reliable state object | |
outputs=[app_state, unit_name_out, analogy_out, commentary_out] | |
) | |
if __name__ == "__main__": | |
demo.launch() |