Spaces:
Sleeping
Sleeping
File size: 1,365 Bytes
7303878 4e8d1be 7303878 4e8d1be 7303878 4e8d1be 7303878 4e8d1be 7303878 4e8d1be 7303878 4fba3ae 7303878 4e8d1be 7303878 4e8d1be 7303878 4e8d1be 7303878 4e8d1be 7303878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq
import gradio as gr
from PIL import Image
# Load Kosmos-2 Model
MODEL_NAME = "microsoft/kosmos-2-patch14-224"
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModelForVision2Seq.from_pretrained(MODEL_NAME)
# Ensure model is on GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def analyze_image(image, prompt):
"""Process an image with a text prompt using Kosmos-2."""
try:
image = Image.fromarray(image) # Convert to PIL Image
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device)
# Generate output
output = model.generate(**inputs, max_new_tokens=100) # Allow up to 100 new tokens
result_text = processor.batch_decode(output, skip_special_tokens=True)[0]
return result_text
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
iface = gr.Interface(
fn=analyze_image,
inputs=[gr.Image(type="numpy"), gr.Textbox(label="Prompt")],
outputs=gr.Textbox(label="Generated Response"),
title="Kosmos-2 Image Reasoning",
description="Upload an image and provide a text prompt. Kosmos-2 will generate insights based on the image and text input.",
)
# Launch the Gradio app
iface.launch()
|