Spaces:
Paused
Paused
| import os | |
| import re | |
| import tempfile | |
| import os | |
| import arxiv | |
| import gradio as gr | |
| import requests | |
| from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic | |
| from arxiv_latex_extractor import get_paper_content | |
| from fastapi.staticfiles import StaticFiles | |
| from huggingface_hub import HfApi | |
| from coreservice import app | |
| LEADING_PROMPT = "Read the following paper:" | |
| # with open("assets/custom.css", "r", encoding="utf-8") as f: | |
| # custom_css = f.read() | |
| custom_css = """ | |
| div#component-4 #chatbot { | |
| height: 800px !important; | |
| } | |
| """ | |
| def replace_texttt(text): | |
| return re.sub(r"\\texttt\{(.*?)\}", r"*\1*", text) | |
| def get_paper_info(paper_id): | |
| # Create a search query with the arXiv ID | |
| search = arxiv.Search(id_list=[paper_id]) | |
| # Fetch the paper using its arXiv ID | |
| paper = next(search.results(), None) | |
| if paper is not None: | |
| # Return the paper's title and abstract | |
| # remove new lines | |
| title_ = paper.title.replace("\n", " ").replace("\r", " ") | |
| summary_ = paper.summary.replace("\n", " ").replace("\r", " ") | |
| return title_, summary_ | |
| else: | |
| return None, None | |
| def get_paper_from_huggingface(paper_id): | |
| try: | |
| url = f"https://huggingface.co/datasets/taesiri/arxiv_db/raw/main/papers/{paper_id}.tex" | |
| response = requests.get(url) | |
| response.raise_for_status() | |
| return response.text | |
| except Exception as e: | |
| return None | |
| class ContextualQA: | |
| def __init__(self, client, model="claude-2.0"): | |
| self.client = client | |
| self.model = model | |
| self.context = "" | |
| self.questions = [] | |
| self.responses = [] | |
| def load_text(self, text): | |
| self.context = text | |
| def ask_question(self, question): | |
| if self.questions: | |
| # For the first question-answer pair, don't add HUMAN_PROMPT before the question | |
| first_pair = f"Question: {self.questions[0]}\n{AI_PROMPT} Answer: {self.responses[0]}" | |
| # For subsequent questions, include both HUMAN_PROMPT and AI_PROMPT | |
| subsequent_pairs = "\n".join( | |
| [ | |
| f"{HUMAN_PROMPT} Question: {q}\n{AI_PROMPT} Answer: {a}" | |
| for q, a in zip(self.questions[1:], self.responses[1:]) | |
| ] | |
| ) | |
| history_context = f"{first_pair}\n{subsequent_pairs}" | |
| else: | |
| history_context = "" | |
| full_context = f"{self.context}\n\n{history_context}\n" | |
| prompt = f"{HUMAN_PROMPT} {full_context} {HUMAN_PROMPT} {question} {AI_PROMPT}" | |
| response = self.client.completions.create( | |
| prompt=prompt, | |
| stop_sequences=[HUMAN_PROMPT], | |
| max_tokens_to_sample=6000, | |
| model=self.model, | |
| stream=False, | |
| ) | |
| answer = response.completion | |
| self.questions.append(question) | |
| self.responses.append(answer) | |
| return answer | |
| def clear_context(self): | |
| self.context = "" | |
| self.questions = [] | |
| self.responses = [] | |
| def __getstate__(self): | |
| state = self.__dict__.copy() | |
| del state["client"] | |
| return state | |
| def __setstate__(self, state): | |
| self.__dict__.update(state) | |
| self.client = None | |
| def clean_paper_id(raw_id): | |
| # Remove any leading/trailing spaces | |
| cleaned_id = raw_id.strip() | |
| # Extract paper ID from ArXiv URL if present | |
| match = re.search(r"arxiv\.org\/abs\/([\w\.]+)", cleaned_id) | |
| if match: | |
| cleaned_id = match.group(1) | |
| else: | |
| # Remove trailing dot if present | |
| cleaned_id = re.sub(r"\.$", "", cleaned_id) | |
| return cleaned_id | |
| def load_context(paper_id): | |
| global LEADING_PROMPT | |
| # Clean the paper_id to remove spaces or extract ID from URL | |
| paper_id = clean_paper_id(paper_id) | |
| # Check if the paper is already on Hugging Face | |
| latex_source = get_paper_from_huggingface(paper_id) | |
| paper_downloaded = False | |
| # If not found on Hugging Face, use arxiv_latex_extractor | |
| if not latex_source: | |
| try: | |
| latex_source = get_paper_content(paper_id) | |
| paper_downloaded = True | |
| except Exception as e: | |
| return None, [(f"Error loading paper with id {paper_id}: {e}",)] | |
| if paper_downloaded: | |
| # Save the LaTeX content to a temporary file | |
| with tempfile.NamedTemporaryFile( | |
| mode="w+", suffix=".tex", delete=False | |
| ) as tmp_file: | |
| tmp_file.write(latex_source) | |
| temp_file_path = tmp_file.name | |
| # Upload the paper to Hugging Face | |
| try: | |
| if os.path.getsize(temp_file_path) > 1: | |
| hf_api = HfApi(token=os.environ["HUGGINGFACE_TOKEN"]) | |
| hf_api.upload_file( | |
| path_or_fileobj=temp_file_path, | |
| path_in_repo=f"papers/{paper_id}.tex", | |
| repo_id="taesiri/arxiv_db", | |
| repo_type="dataset", | |
| ) | |
| except Exception as e: | |
| print(f"Error uploading paper with id {paper_id}: {e}") | |
| # Initialize the Anthropic client and QA model | |
| client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) | |
| qa_model = ContextualQA(client, model="claude-2.0") | |
| context = f"{LEADING_PROMPT}\n{latex_source}" | |
| qa_model.load_text(context) | |
| # Get the paper's title and abstract | |
| title, abstract = get_paper_info(paper_id) | |
| title = replace_texttt(title) | |
| abstract = replace_texttt(abstract) | |
| return ( | |
| qa_model, | |
| [ | |
| ( | |
| f"Load the paper with id {paper_id}.", | |
| f"\n**Title**: {title}\n\n**Abstract**: {abstract}\n\nPaper loaded. You can now ask questions.", | |
| ) | |
| ], | |
| ) | |
| def answer_fn(qa_model, question, chat_history): | |
| # if question is empty, tell user that they need to ask a question | |
| if question == "": | |
| chat_history.append(("No Question Asked", "Please ask a question.")) | |
| return qa_model, chat_history, "" | |
| client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) | |
| qa_model.client = client | |
| try: | |
| answer = qa_model.ask_question(question) | |
| except Exception as e: | |
| chat_history.append(("Error Asking Question", str(e))) | |
| return qa_model, chat_history, "" | |
| chat_history.append((question, answer)) | |
| return qa_model, chat_history, "" | |
| def clear_context(): | |
| return [] | |
| with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo: | |
| gr.HTML( | |
| """ | |
| <h1 style='text-align: center; font-size: 24px;'> | |
| Explore ArXiv Papers in Depth with <code>claude-2.0</code> - Ask Questions and Get Answers Instantly | |
| </h1> | |
| """ | |
| ) | |
| # gr.HTML( | |
| # """ | |
| # <p style='text-align: justify; font-size: 18px; margin: 10px;'> | |
| # Explore the depths of ArXiv papers with our interactive app, powered by the advanced <code>claude-2.0</code> model. Ask detailed questions and get immediate, context-rich answers from academic papers. | |
| # </p> | |
| # """ | |
| # ) | |
| gr.HTML( | |
| """ | |
| <center> | |
| <a href="https://huggingface.co/spaces/taesiri/ClaudeReadsArxiv?duplicate=true"> | |
| <img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="vertical-align: middle; max-width: 100px; margin-right: 10px;"> | |
| </a> | |
| <span style="font-size: 14px; vertical-align: middle;"> | |
| Duplicate the Space with your Anthropic API Key | | |
| Follow me on Twitter for more updates: <a href="https://twitter.com/taesiri" target="_blank">@taesiri</a> | |
| </span> | |
| </center> | |
| """ | |
| ) | |
| with gr.Row().style(equal_height=False): | |
| with gr.Column(scale=2, emem_id="column-flex"): | |
| chatbot = gr.Chatbot(elem_id="chatbot") | |
| with gr.Column(scale=1): | |
| paper_id_input = gr.Textbox(label="Enter Paper ID", value="2310.12103") | |
| btn_load = gr.Button("Load Paper") | |
| qa_model = gr.State() | |
| question_txt = gr.Textbox( | |
| label="Question", lines=5, placeholder="Type your question here..." | |
| ) | |
| btn_answer = gr.Button("Answer Question") | |
| btn_clear = gr.Button("Clear Chat") | |
| gr.HTML( | |
| """<center>All the inputs are being sent to Anthropic's Claude endpoints. Please refer to <a href="https://legal.anthropic.com/#privacy">this link</a> for privacy policy.</center>""" | |
| ) | |
| gr.Markdown( | |
| "## Acknowledgements\n" | |
| "This project is made possible through the generous support of " | |
| "[Anthropic](https://www.anthropic.com/), who provided free access to the `claude-2.0` API." | |
| ) | |
| btn_load.click(load_context, inputs=[paper_id_input], outputs=[qa_model, chatbot]) | |
| btn_answer.click( | |
| answer_fn, | |
| inputs=[qa_model, question_txt, chatbot], | |
| outputs=[qa_model, chatbot, question_txt], | |
| ) | |
| question_txt.submit( | |
| answer_fn, | |
| inputs=[qa_model, question_txt, chatbot], | |
| outputs=[qa_model, chatbot, question_txt], | |
| ) | |
| btn_clear.click(clear_context, outputs=[chatbot]) | |
| app.mount("/js", StaticFiles(directory="js"), name="js") | |
| gr.mount_gradio_app(app, demo, path="/") | |