File size: 2,140 Bytes
a62776c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import cv2
import numpy as np
def apply_filter(image, filter_type):
# ํํฐ์ ๋ฐ๋ผ ์ฒ๋ฆฌ
if filter_type == "Soft Glow":
image = cv2.GaussianBlur(image, (15, 15), 0)
image = cv2.addWeighted(image, 1.5, cv2.GaussianBlur(image, (5, 5), 0), -0.5, 0)
elif filter_type == "Portrait Enhancer":
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
l = cv2.equalizeHist(l)
enhanced = cv2.merge((l, a, b))
image = cv2.cvtColor(enhanced, cv2.COLOR_LAB2BGR)
elif filter_type == "Warm Tone":
warm_filter = np.array([[[20, 10, 0]]], dtype=np.uint8)
image = cv2.add(image, warm_filter)
elif filter_type == "Cold Tone":
cold_filter = np.array([[[-10, 0, 20]]], dtype=np.uint8)
image = cv2.add(image, cold_filter)
elif filter_type == "High-Key":
image = cv2.addWeighted(image, 1.5, np.zeros_like(image, image.dtype), 0, 50)
elif filter_type == "Low-Key":
image = cv2.addWeighted(image, 0.8, np.zeros_like(image, image.dtype), 0, -50)
elif filter_type == "Haze":
haze_filter = cv2.GaussianBlur(image, (25, 25), 10)
image = cv2.addWeighted(image, 0.8, haze_filter, 0.2, 0)
return image
def convert_and_save(image, filter_type):
# ํํฐ ์ ์ฉ
filtered_image = apply_filter(image, filter_type)
# ์ด๋ฏธ์ง๋ฅผ ํ๋ฐฑ์ผ๋ก ๋ณํ
gray_image = cv2.cvtColor(filtered_image, cv2.COLOR_BGR2GRAY)
output_path = "output.jpg"
cv2.imwrite(output_path, gray_image)
return gray_image, output_path
# Gradio ์ธํฐํ์ด์ค ์ ์
iface = gr.Interface(
fn=convert_and_save,
inputs=[
gr.Image(label="์ด๋ฏธ์ง ์
๋ก๋"),
gr.Radio(["Soft Glow", "Portrait Enhancer", "Warm Tone", "Cold Tone", "High-Key", "Low-Key", "Haze"], label="ํํฐ ์ ํ")
],
outputs=["image", "file"],
title="์ด๋ฏธ์ง ํ๋ฐฑ ๋ณํ๊ธฐ",
description="์ด๋ฏธ์ง๋ฅผ ์
๋ก๋ํ๊ณ ํํฐ๋ฅผ ์ ํํ ํ ํ๋ฐฑ์ผ๋ก ๋ณํ๋ ์ด๋ฏธ์ง๋ฅผ ๋ค์ด๋ก๋ํ ์ ์์ต๋๋ค."
)
if __name__ == "__main__":
iface.launch()
|