import os # Get the absolute path to the root directory (where gcg, test_images, etc. are located) ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Dataset details data_path = "/Users/tejacherukuri/TReNDS/MyResearch/Datasets/Zenodo-DR7" labels = ['No DR', 'Mild NPDR', 'Moderate NPDR', 'Severe NPDR', 'Very Severe NPDR', 'PDR', 'Advanced PDR'] image_size = (512,512,3) num_classes = 7 labelencoder_save_path = os.path.join(ROOT_DIR, 'saves', 'labelencoder.pkl') heatmaps_save_path = os.path.join(ROOT_DIR, 'heatmaps') # Training Parameters EPOCHS = 100 batch_size = 32 model_path = os.path.join(ROOT_DIR, 'saves', 'gcg.weights.keras') # Attention Layer to get features gcg_layer_name = 'attention_gate' #Inference test_images = [ os.path.join(ROOT_DIR, 'test_images', '184_No_DR.jpg'), os.path.join(ROOT_DIR, 'test_images', '198_Moderate_NPDR.jpg'), os.path.join(ROOT_DIR, 'test_images', '440_Severe_NPDR.jpg'), os.path.join(ROOT_DIR, 'test_images', '500_Very_Severe_NPDR.jpg'), os.path.join(ROOT_DIR, 'test_images', '635_PDR.jpg'), os.path.join(ROOT_DIR, 'test_images', '705_Advanced_PDR.jpg') ]