Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
|
3 |
+
from transformers.image_utils import load_image
|
4 |
+
from threading import Thread
|
5 |
+
import time
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load the SmolVLM model and processor
|
9 |
+
print("π§ Loading SmolVLM model...")
|
10 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct-250M")
|
11 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
12 |
+
"HuggingFaceTB/SmolVLM-Instruct-250M",
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
device_map="auto" # Automatically handles CPU/GPU placement
|
15 |
+
)
|
16 |
+
print("β
Model loaded successfully!")
|
17 |
+
|
18 |
+
def model_inference(input_dict, history):
|
19 |
+
"""Process multimodal input and generate response"""
|
20 |
+
text = input_dict["text"]
|
21 |
+
|
22 |
+
# Handle image input
|
23 |
+
if len(input_dict["files"]) > 1:
|
24 |
+
images = [load_image(image) for image in input_dict["files"]]
|
25 |
+
elif len(input_dict["files"]) == 1:
|
26 |
+
images = [load_image(input_dict["files"][0])]
|
27 |
+
else:
|
28 |
+
images = []
|
29 |
+
|
30 |
+
# Validation
|
31 |
+
if text == "" and not images:
|
32 |
+
raise gr.Error("Please input a query and optionally image(s).")
|
33 |
+
|
34 |
+
if text == "" and images:
|
35 |
+
raise gr.Error("Please input a text query along with the image(s).")
|
36 |
+
|
37 |
+
# Prepare the conversation format
|
38 |
+
resulting_messages = [
|
39 |
+
{
|
40 |
+
"role": "user",
|
41 |
+
"content": [{"type": "image"} for _ in range(len(images))] + [
|
42 |
+
{"type": "text", "text": text}
|
43 |
+
]
|
44 |
+
}
|
45 |
+
]
|
46 |
+
|
47 |
+
try:
|
48 |
+
# Apply chat template and process inputs
|
49 |
+
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
50 |
+
inputs = processor(text=prompt, images=images if images else None, return_tensors="pt")
|
51 |
+
|
52 |
+
# Move to appropriate device
|
53 |
+
device = next(model.parameters()).device
|
54 |
+
inputs = {k: v.to(device) if v is not None else v for k, v in inputs.items()}
|
55 |
+
|
56 |
+
# Set up streaming generation
|
57 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
58 |
+
generation_kwargs = dict(
|
59 |
+
inputs,
|
60 |
+
streamer=streamer,
|
61 |
+
max_new_tokens=500,
|
62 |
+
min_new_tokens=10,
|
63 |
+
no_repeat_ngram_size=2,
|
64 |
+
do_sample=True,
|
65 |
+
temperature=0.7,
|
66 |
+
top_p=0.9
|
67 |
+
)
|
68 |
+
|
69 |
+
# Start generation in separate thread
|
70 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
71 |
+
thread.start()
|
72 |
+
|
73 |
+
# Stream the response
|
74 |
+
yield "Thinking..."
|
75 |
+
buffer = ""
|
76 |
+
|
77 |
+
for new_text in streamer:
|
78 |
+
buffer += new_text
|
79 |
+
time.sleep(0.02) # Small delay for smooth streaming
|
80 |
+
yield buffer
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
yield f"β Error generating response: {str(e)}"
|
84 |
+
|
85 |
+
# Example prompts and images for demonstration
|
86 |
+
examples = [
|
87 |
+
[{"text": "What do you see in this image?", "files": []}],
|
88 |
+
[{"text": "Describe the colors and objects in this image in detail.", "files": []}],
|
89 |
+
[{"text": "What is the mood or atmosphere of this image?", "files": []}],
|
90 |
+
[{"text": "Are there any people in this image? What are they doing?", "files": []}],
|
91 |
+
[{"text": "What text can you read in this image?", "files": []}],
|
92 |
+
[{"text": "Count the number of objects you can see.", "files": []}],
|
93 |
+
]
|
94 |
+
|
95 |
+
# Create the Gradio interface using ChatInterface
|
96 |
+
demo = gr.ChatInterface(
|
97 |
+
fn=model_inference,
|
98 |
+
title="π SmolVLM Vision Chat",
|
99 |
+
description="""
|
100 |
+
Chat with **SmolVLM-256M**, a compact but powerful vision-language model!
|
101 |
+
|
102 |
+
**How to use:**
|
103 |
+
1. Upload one or more images using the π button
|
104 |
+
2. Ask questions about the images
|
105 |
+
3. Get detailed AI-generated descriptions and answers
|
106 |
+
|
107 |
+
**Example questions:**
|
108 |
+
- "What do you see in this image?"
|
109 |
+
- "Describe the colors and composition"
|
110 |
+
- "What text is visible in this image?"
|
111 |
+
- "Count the objects in this image"
|
112 |
+
|
113 |
+
This model can analyze photos, diagrams, documents, artwork, and more!
|
114 |
+
""",
|
115 |
+
examples=examples,
|
116 |
+
textbox=gr.MultimodalTextbox(
|
117 |
+
label="π¬ Ask about your images...",
|
118 |
+
file_types=["image"],
|
119 |
+
file_count="multiple",
|
120 |
+
placeholder="Upload images and ask questions about them!"
|
121 |
+
),
|
122 |
+
stop_btn="βΉοΈ Stop Generation",
|
123 |
+
multimodal=True,
|
124 |
+
cache_examples=False,
|
125 |
+
theme=gr.themes.Soft(),
|
126 |
+
css="""
|
127 |
+
.gradio-container {
|
128 |
+
max-width: 1000px !important;
|
129 |
+
}
|
130 |
+
.chat-message {
|
131 |
+
border-radius: 10px !important;
|
132 |
+
}
|
133 |
+
"""
|
134 |
+
)
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
print("π Launching SmolVLM Chat Interface...")
|
138 |
+
demo.launch(
|
139 |
+
server_name="0.0.0.0",
|
140 |
+
server_port=7860,
|
141 |
+
share=False,
|
142 |
+
show_error=True
|
143 |
+
)
|