Spaces:
Sleeping
Sleeping
File size: 6,888 Bytes
3afc718 d86ac9a 3afc718 d86ac9a 3afc718 d86ac9a 3afc718 d86ac9a 3afc718 d86ac9a 3afc718 d86ac9a 3afc718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# import gradio as gr # type: ignore
# from huggingface_hub import InferenceClient # type: ignore
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
# ###########################
# # app.py
# import gradio as gr # type: ignore
# import os
# # import openai # type: ignore
# # # openai.api_key = os.getenv("OPENAI_API_KEY")
# # client = openai.OpenAI()
# # def respond(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p,
# # image_uploaded,
# # file_uploaded
# # ):
# # #read system message
# # messages = [{"role": "system", "content": system_message}]
# # #read history
# # for val in history:
# # if val[0]:
# # messages.append({"role": "user", "content": val[0]})
# # if val[1]:
# # messages.append({"role": "assistant", "content": val[1]})
# # #read output
# # messages.append({"role": "user", "content": message})
# # print("## Messages: \n", messages) #debug output
# # #create output
# # response = client.responses.create(
# # model="gpt-4.1-nano",
# # input=messages,
# # temperature=temperature,
# # top_p=top_p,
# # max_output_tokens=max_tokens
# # )
# # #read output
# # response = response.output_text
# # print("## Response: ", response) #debug output
# # print("\n")
# # yield response #chat reply
# # import torch
# # from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
# # model_name = "deepseek-ai/deepseek-math-7b-base"
# # tokenizer = AutoTokenizer.from_pretrained(model_name)
# # model = AutoModelForCausalLM.from_pretrained(model_name)
# # # model.generation_config = GenerationConfig.from_pretrained(model_name)
# # # model.generation_config.pad_token_id = model.generation_config.eos_token_id
# # def deepseek(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p):
# # # messages = [
# # # {"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
# # # ]
# # messages = [
# # {"role": "user", "content": message}
# # ]
# # input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
# # outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
# # print(outputs)
# # print("\n")
# # result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
# # print(result)
# # return result
# # import replicate
# # def deepseek_api_replicate(
# # user_message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_new_tokens,
# # temperature,
# # top_p):
# # """
# # Gọi DeepSeek Math trên Replicate và trả ngay kết quả.
# # Trả về:
# # str hoặc [bytes]: output model sinh ra
# # """
# # # 1. Khởi tạo client và xác thực
# # # token = os.getenv("REPLICATE_API_TOKEN")
# # # if not token:
# # # raise RuntimeError("Missing REPLICATE_API_TOKEN") # bảo mật bằng biến môi trường
# # client = replicate.Client(api_token="REPLICATE_API_TOKEN")
# # # 2. Gọi model
# # output = client.run(
# # "deepseek-ai/deepseek-math-7b-base:61f572dae0985541cdaeb4a114fd5d2d16cb40dac3894da10558992fc60547c7",
# # input={
# # "system_prompt": system_message,
# # "user_prompt": user_message,
# # "max_new_tokens": max_new_tokens,
# # "temperature": temperature,
# # "top_p": top_p
# # }
# # )
# # # 3. Trả kết quả
# # return output
# import call_api
# chat = gr.ChatInterface(
# call_api.respond, #chat
# title="Trợ lý Học Tập AI",
# description="Nhập câu hỏi của bạn về Toán, Lý, Hóa, Văn… và nhận giải đáp chi tiết ngay lập tức!",
# additional_inputs=[
# gr.Textbox("Bạn là một chatbot tiếng Việt thân thiện.", label="System message"),
# gr.Slider(1, 2048, value=200, step=1, label="Max new tokens"),
# gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
# # gr.Image(type="pil", label="Attach an image (optional)"),
# # gr.File(label="Upload a file (optional)"),
# ],
# examples=[
# # Mỗi item: [message, system_message, max_tokens, temperature, top_p]
# ["tích phân của x^2 từ 0 đến 2 là gì? vui lòng lập luận từng bước, và đặt kết quả cuối cùng trong \boxed{}", "bạn là nhà toán học", 100, 0.7, 0.95],
# ],
# )
# if __name__ == "__main__":
# chat.launch()
|