Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
FCPE.py
ADDED
@@ -0,0 +1,1036 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.nn.utils.parametrizations import weight_norm
|
8 |
+
from torchaudio.transforms import Resample
|
9 |
+
import os
|
10 |
+
import librosa
|
11 |
+
import soundfile as sf
|
12 |
+
import torch.utils.data
|
13 |
+
from librosa.filters import mel as librosa_mel_fn
|
14 |
+
import math
|
15 |
+
from functools import partial
|
16 |
+
|
17 |
+
from einops import rearrange, repeat
|
18 |
+
from local_attention import LocalAttention
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
os.environ["LRU_CACHE_CAPACITY"] = "3"
|
22 |
+
|
23 |
+
|
24 |
+
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
|
25 |
+
sampling_rate = None
|
26 |
+
try:
|
27 |
+
data, sampling_rate = sf.read(full_path, always_2d=True) # than soundfile.
|
28 |
+
except Exception as error:
|
29 |
+
print(f"'{full_path}' failed to load with {error}")
|
30 |
+
if return_empty_on_exception:
|
31 |
+
return [], sampling_rate or target_sr or 48000
|
32 |
+
else:
|
33 |
+
raise Exception(error)
|
34 |
+
|
35 |
+
if len(data.shape) > 1:
|
36 |
+
data = data[:, 0]
|
37 |
+
assert (
|
38 |
+
len(data) > 2
|
39 |
+
) # check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
|
40 |
+
|
41 |
+
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
|
42 |
+
max_mag = -np.iinfo(
|
43 |
+
data.dtype
|
44 |
+
).min # maximum magnitude = min possible value of intXX
|
45 |
+
else: # if audio data is type fp32
|
46 |
+
max_mag = max(np.amax(data), -np.amin(data))
|
47 |
+
max_mag = (
|
48 |
+
(2**31) + 1
|
49 |
+
if max_mag > (2**15)
|
50 |
+
else ((2**15) + 1 if max_mag > 1.01 else 1.0)
|
51 |
+
) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
|
52 |
+
|
53 |
+
data = torch.FloatTensor(data.astype(np.float32)) / max_mag
|
54 |
+
|
55 |
+
if (
|
56 |
+
torch.isinf(data) | torch.isnan(data)
|
57 |
+
).any() and return_empty_on_exception: # resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
|
58 |
+
return [], sampling_rate or target_sr or 48000
|
59 |
+
if target_sr is not None and sampling_rate != target_sr:
|
60 |
+
data = torch.from_numpy(
|
61 |
+
librosa.core.resample(
|
62 |
+
data.numpy(), orig_sr=sampling_rate, target_sr=target_sr
|
63 |
+
)
|
64 |
+
)
|
65 |
+
sampling_rate = target_sr
|
66 |
+
|
67 |
+
return data, sampling_rate
|
68 |
+
|
69 |
+
|
70 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
71 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
72 |
+
|
73 |
+
|
74 |
+
def dynamic_range_decompression(x, C=1):
|
75 |
+
return np.exp(x) / C
|
76 |
+
|
77 |
+
|
78 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
79 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
80 |
+
|
81 |
+
|
82 |
+
def dynamic_range_decompression_torch(x, C=1):
|
83 |
+
return torch.exp(x) / C
|
84 |
+
|
85 |
+
|
86 |
+
class STFT:
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
sr=22050,
|
90 |
+
n_mels=80,
|
91 |
+
n_fft=1024,
|
92 |
+
win_size=1024,
|
93 |
+
hop_length=256,
|
94 |
+
fmin=20,
|
95 |
+
fmax=11025,
|
96 |
+
clip_val=1e-5,
|
97 |
+
):
|
98 |
+
self.target_sr = sr
|
99 |
+
|
100 |
+
self.n_mels = n_mels
|
101 |
+
self.n_fft = n_fft
|
102 |
+
self.win_size = win_size
|
103 |
+
self.hop_length = hop_length
|
104 |
+
self.fmin = fmin
|
105 |
+
self.fmax = fmax
|
106 |
+
self.clip_val = clip_val
|
107 |
+
self.mel_basis = {}
|
108 |
+
self.hann_window = {}
|
109 |
+
|
110 |
+
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
|
111 |
+
sampling_rate = self.target_sr
|
112 |
+
n_mels = self.n_mels
|
113 |
+
n_fft = self.n_fft
|
114 |
+
win_size = self.win_size
|
115 |
+
hop_length = self.hop_length
|
116 |
+
fmin = self.fmin
|
117 |
+
fmax = self.fmax
|
118 |
+
clip_val = self.clip_val
|
119 |
+
|
120 |
+
factor = 2 ** (keyshift / 12)
|
121 |
+
n_fft_new = int(np.round(n_fft * factor))
|
122 |
+
win_size_new = int(np.round(win_size * factor))
|
123 |
+
hop_length_new = int(np.round(hop_length * speed))
|
124 |
+
if not train:
|
125 |
+
mel_basis = self.mel_basis
|
126 |
+
hann_window = self.hann_window
|
127 |
+
else:
|
128 |
+
mel_basis = {}
|
129 |
+
hann_window = {}
|
130 |
+
|
131 |
+
mel_basis_key = str(fmax) + "_" + str(y.device)
|
132 |
+
if mel_basis_key not in mel_basis:
|
133 |
+
mel = librosa_mel_fn(
|
134 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax
|
135 |
+
)
|
136 |
+
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
|
137 |
+
|
138 |
+
keyshift_key = str(keyshift) + "_" + str(y.device)
|
139 |
+
if keyshift_key not in hann_window:
|
140 |
+
hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
|
141 |
+
|
142 |
+
pad_left = (win_size_new - hop_length_new) // 2
|
143 |
+
pad_right = max(
|
144 |
+
(win_size_new - hop_length_new + 1) // 2,
|
145 |
+
win_size_new - y.size(-1) - pad_left,
|
146 |
+
)
|
147 |
+
if pad_right < y.size(-1):
|
148 |
+
mode = "reflect"
|
149 |
+
else:
|
150 |
+
mode = "constant"
|
151 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode)
|
152 |
+
y = y.squeeze(1)
|
153 |
+
|
154 |
+
spec = torch.stft(
|
155 |
+
y,
|
156 |
+
n_fft_new,
|
157 |
+
hop_length=hop_length_new,
|
158 |
+
win_length=win_size_new,
|
159 |
+
window=hann_window[keyshift_key],
|
160 |
+
center=center,
|
161 |
+
pad_mode="reflect",
|
162 |
+
normalized=False,
|
163 |
+
onesided=True,
|
164 |
+
return_complex=True,
|
165 |
+
)
|
166 |
+
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
|
167 |
+
if keyshift != 0:
|
168 |
+
size = n_fft // 2 + 1
|
169 |
+
resize = spec.size(1)
|
170 |
+
if resize < size:
|
171 |
+
spec = F.pad(spec, (0, 0, 0, size - resize))
|
172 |
+
spec = spec[:, :size, :] * win_size / win_size_new
|
173 |
+
spec = torch.matmul(mel_basis[mel_basis_key], spec)
|
174 |
+
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
|
175 |
+
return spec
|
176 |
+
|
177 |
+
def __call__(self, audiopath):
|
178 |
+
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
|
179 |
+
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
|
180 |
+
return spect
|
181 |
+
|
182 |
+
|
183 |
+
stft = STFT()
|
184 |
+
|
185 |
+
# import fast_transformers.causal_product.causal_product_cuda
|
186 |
+
|
187 |
+
|
188 |
+
def softmax_kernel(
|
189 |
+
data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None
|
190 |
+
):
|
191 |
+
b, h, *_ = data.shape
|
192 |
+
# (batch size, head, length, model_dim)
|
193 |
+
|
194 |
+
# normalize model dim
|
195 |
+
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
|
196 |
+
|
197 |
+
# what is ration?, projection_matrix.shape[0] --> 266
|
198 |
+
|
199 |
+
ratio = projection_matrix.shape[0] ** -0.5
|
200 |
+
|
201 |
+
projection = repeat(projection_matrix, "j d -> b h j d", b=b, h=h)
|
202 |
+
projection = projection.type_as(data)
|
203 |
+
|
204 |
+
# data_dash = w^T x
|
205 |
+
data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), projection)
|
206 |
+
|
207 |
+
# diag_data = D**2
|
208 |
+
diag_data = data**2
|
209 |
+
diag_data = torch.sum(diag_data, dim=-1)
|
210 |
+
diag_data = (diag_data / 2.0) * (data_normalizer**2)
|
211 |
+
diag_data = diag_data.unsqueeze(dim=-1)
|
212 |
+
|
213 |
+
if is_query:
|
214 |
+
data_dash = ratio * (
|
215 |
+
torch.exp(
|
216 |
+
data_dash
|
217 |
+
- diag_data
|
218 |
+
- torch.max(data_dash, dim=-1, keepdim=True).values
|
219 |
+
)
|
220 |
+
+ eps
|
221 |
+
)
|
222 |
+
else:
|
223 |
+
data_dash = ratio * (
|
224 |
+
torch.exp(data_dash - diag_data + eps)
|
225 |
+
) # - torch.max(data_dash)) + eps)
|
226 |
+
|
227 |
+
return data_dash.type_as(data)
|
228 |
+
|
229 |
+
|
230 |
+
def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
|
231 |
+
unstructured_block = torch.randn((cols, cols), device=device)
|
232 |
+
q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
|
233 |
+
q, r = map(lambda t: t.to(device), (q, r))
|
234 |
+
|
235 |
+
# proposed by @Parskatt
|
236 |
+
# to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
|
237 |
+
if qr_uniform_q:
|
238 |
+
d = torch.diag(r, 0)
|
239 |
+
q *= d.sign()
|
240 |
+
return q.t()
|
241 |
+
|
242 |
+
|
243 |
+
def exists(val):
|
244 |
+
return val is not None
|
245 |
+
|
246 |
+
|
247 |
+
def empty(tensor):
|
248 |
+
return tensor.numel() == 0
|
249 |
+
|
250 |
+
|
251 |
+
def default(val, d):
|
252 |
+
return val if exists(val) else d
|
253 |
+
|
254 |
+
|
255 |
+
def cast_tuple(val):
|
256 |
+
return (val,) if not isinstance(val, tuple) else val
|
257 |
+
|
258 |
+
|
259 |
+
class PCmer(nn.Module):
|
260 |
+
"""The encoder that is used in the Transformer model."""
|
261 |
+
|
262 |
+
def __init__(
|
263 |
+
self,
|
264 |
+
num_layers,
|
265 |
+
num_heads,
|
266 |
+
dim_model,
|
267 |
+
dim_keys,
|
268 |
+
dim_values,
|
269 |
+
residual_dropout,
|
270 |
+
attention_dropout,
|
271 |
+
):
|
272 |
+
super().__init__()
|
273 |
+
self.num_layers = num_layers
|
274 |
+
self.num_heads = num_heads
|
275 |
+
self.dim_model = dim_model
|
276 |
+
self.dim_values = dim_values
|
277 |
+
self.dim_keys = dim_keys
|
278 |
+
self.residual_dropout = residual_dropout
|
279 |
+
self.attention_dropout = attention_dropout
|
280 |
+
|
281 |
+
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
|
282 |
+
|
283 |
+
# METHODS ########################################################################################################
|
284 |
+
|
285 |
+
def forward(self, phone, mask=None):
|
286 |
+
|
287 |
+
# apply all layers to the input
|
288 |
+
for i, layer in enumerate(self._layers):
|
289 |
+
phone = layer(phone, mask)
|
290 |
+
# provide the final sequence
|
291 |
+
return phone
|
292 |
+
|
293 |
+
|
294 |
+
# ==================================================================================================================== #
|
295 |
+
# CLASS _ E N C O D E R L A Y E R #
|
296 |
+
# ==================================================================================================================== #
|
297 |
+
|
298 |
+
|
299 |
+
class _EncoderLayer(nn.Module):
|
300 |
+
"""One layer of the encoder.
|
301 |
+
|
302 |
+
Attributes:
|
303 |
+
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
|
304 |
+
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
|
305 |
+
"""
|
306 |
+
|
307 |
+
def __init__(self, parent: PCmer):
|
308 |
+
"""Creates a new instance of ``_EncoderLayer``.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
parent (Encoder): The encoder that the layers is created for.
|
312 |
+
"""
|
313 |
+
super().__init__()
|
314 |
+
|
315 |
+
self.conformer = ConformerConvModule(parent.dim_model)
|
316 |
+
self.norm = nn.LayerNorm(parent.dim_model)
|
317 |
+
self.dropout = nn.Dropout(parent.residual_dropout)
|
318 |
+
|
319 |
+
# selfatt -> fastatt: performer!
|
320 |
+
self.attn = SelfAttention(
|
321 |
+
dim=parent.dim_model, heads=parent.num_heads, causal=False
|
322 |
+
)
|
323 |
+
|
324 |
+
# METHODS ########################################################################################################
|
325 |
+
|
326 |
+
def forward(self, phone, mask=None):
|
327 |
+
|
328 |
+
# compute attention sub-layer
|
329 |
+
phone = phone + (self.attn(self.norm(phone), mask=mask))
|
330 |
+
|
331 |
+
phone = phone + (self.conformer(phone))
|
332 |
+
|
333 |
+
return phone
|
334 |
+
|
335 |
+
|
336 |
+
def calc_same_padding(kernel_size):
|
337 |
+
pad = kernel_size // 2
|
338 |
+
return (pad, pad - (kernel_size + 1) % 2)
|
339 |
+
|
340 |
+
|
341 |
+
# helper classes
|
342 |
+
|
343 |
+
|
344 |
+
class Swish(nn.Module):
|
345 |
+
def forward(self, x):
|
346 |
+
return x * x.sigmoid()
|
347 |
+
|
348 |
+
|
349 |
+
class Transpose(nn.Module):
|
350 |
+
def __init__(self, dims):
|
351 |
+
super().__init__()
|
352 |
+
assert len(dims) == 2, "dims must be a tuple of two dimensions"
|
353 |
+
self.dims = dims
|
354 |
+
|
355 |
+
def forward(self, x):
|
356 |
+
return x.transpose(*self.dims)
|
357 |
+
|
358 |
+
|
359 |
+
class GLU(nn.Module):
|
360 |
+
def __init__(self, dim):
|
361 |
+
super().__init__()
|
362 |
+
self.dim = dim
|
363 |
+
|
364 |
+
def forward(self, x):
|
365 |
+
out, gate = x.chunk(2, dim=self.dim)
|
366 |
+
return out * gate.sigmoid()
|
367 |
+
|
368 |
+
|
369 |
+
class DepthWiseConv1d(nn.Module):
|
370 |
+
def __init__(self, chan_in, chan_out, kernel_size, padding):
|
371 |
+
super().__init__()
|
372 |
+
self.padding = padding
|
373 |
+
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in)
|
374 |
+
|
375 |
+
def forward(self, x):
|
376 |
+
x = F.pad(x, self.padding)
|
377 |
+
return self.conv(x)
|
378 |
+
|
379 |
+
|
380 |
+
class ConformerConvModule(nn.Module):
|
381 |
+
def __init__(
|
382 |
+
self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0
|
383 |
+
):
|
384 |
+
super().__init__()
|
385 |
+
|
386 |
+
inner_dim = dim * expansion_factor
|
387 |
+
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
|
388 |
+
|
389 |
+
self.net = nn.Sequential(
|
390 |
+
nn.LayerNorm(dim),
|
391 |
+
Transpose((1, 2)),
|
392 |
+
nn.Conv1d(dim, inner_dim * 2, 1),
|
393 |
+
GLU(dim=1),
|
394 |
+
DepthWiseConv1d(
|
395 |
+
inner_dim, inner_dim, kernel_size=kernel_size, padding=padding
|
396 |
+
),
|
397 |
+
# nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
|
398 |
+
Swish(),
|
399 |
+
nn.Conv1d(inner_dim, dim, 1),
|
400 |
+
Transpose((1, 2)),
|
401 |
+
nn.Dropout(dropout),
|
402 |
+
)
|
403 |
+
|
404 |
+
def forward(self, x):
|
405 |
+
return self.net(x)
|
406 |
+
|
407 |
+
|
408 |
+
def linear_attention(q, k, v):
|
409 |
+
if v is None:
|
410 |
+
out = torch.einsum("...ed,...nd->...ne", k, q)
|
411 |
+
return out
|
412 |
+
|
413 |
+
else:
|
414 |
+
k_cumsum = k.sum(dim=-2)
|
415 |
+
# k_cumsum = k.sum(dim = -2)
|
416 |
+
D_inv = 1.0 / (torch.einsum("...nd,...d->...n", q, k_cumsum.type_as(q)) + 1e-8)
|
417 |
+
|
418 |
+
context = torch.einsum("...nd,...ne->...de", k, v)
|
419 |
+
out = torch.einsum("...de,...nd,...n->...ne", context, q, D_inv)
|
420 |
+
return out
|
421 |
+
|
422 |
+
|
423 |
+
def gaussian_orthogonal_random_matrix(
|
424 |
+
nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None
|
425 |
+
):
|
426 |
+
nb_full_blocks = int(nb_rows / nb_columns)
|
427 |
+
block_list = []
|
428 |
+
|
429 |
+
for _ in range(nb_full_blocks):
|
430 |
+
q = orthogonal_matrix_chunk(
|
431 |
+
nb_columns, qr_uniform_q=qr_uniform_q, device=device
|
432 |
+
)
|
433 |
+
block_list.append(q)
|
434 |
+
|
435 |
+
remaining_rows = nb_rows - nb_full_blocks * nb_columns
|
436 |
+
if remaining_rows > 0:
|
437 |
+
q = orthogonal_matrix_chunk(
|
438 |
+
nb_columns, qr_uniform_q=qr_uniform_q, device=device
|
439 |
+
)
|
440 |
+
|
441 |
+
block_list.append(q[:remaining_rows])
|
442 |
+
|
443 |
+
final_matrix = torch.cat(block_list)
|
444 |
+
|
445 |
+
if scaling == 0:
|
446 |
+
multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
|
447 |
+
elif scaling == 1:
|
448 |
+
multiplier = math.sqrt((float(nb_columns))) * torch.ones(
|
449 |
+
(nb_rows,), device=device
|
450 |
+
)
|
451 |
+
else:
|
452 |
+
raise ValueError(f"Invalid scaling {scaling}")
|
453 |
+
|
454 |
+
return torch.diag(multiplier) @ final_matrix
|
455 |
+
|
456 |
+
|
457 |
+
class FastAttention(nn.Module):
|
458 |
+
def __init__(
|
459 |
+
self,
|
460 |
+
dim_heads,
|
461 |
+
nb_features=None,
|
462 |
+
ortho_scaling=0,
|
463 |
+
causal=False,
|
464 |
+
generalized_attention=False,
|
465 |
+
kernel_fn=nn.ReLU(),
|
466 |
+
qr_uniform_q=False,
|
467 |
+
no_projection=False,
|
468 |
+
):
|
469 |
+
super().__init__()
|
470 |
+
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
|
471 |
+
|
472 |
+
self.dim_heads = dim_heads
|
473 |
+
self.nb_features = nb_features
|
474 |
+
self.ortho_scaling = ortho_scaling
|
475 |
+
|
476 |
+
self.create_projection = partial(
|
477 |
+
gaussian_orthogonal_random_matrix,
|
478 |
+
nb_rows=self.nb_features,
|
479 |
+
nb_columns=dim_heads,
|
480 |
+
scaling=ortho_scaling,
|
481 |
+
qr_uniform_q=qr_uniform_q,
|
482 |
+
)
|
483 |
+
projection_matrix = self.create_projection()
|
484 |
+
self.register_buffer("projection_matrix", projection_matrix)
|
485 |
+
|
486 |
+
self.generalized_attention = generalized_attention
|
487 |
+
self.kernel_fn = kernel_fn
|
488 |
+
|
489 |
+
# if this is turned on, no projection will be used
|
490 |
+
# queries and keys will be softmax-ed as in the original efficient attention paper
|
491 |
+
self.no_projection = no_projection
|
492 |
+
|
493 |
+
self.causal = causal
|
494 |
+
|
495 |
+
@torch.no_grad()
|
496 |
+
def redraw_projection_matrix(self):
|
497 |
+
projections = self.create_projection()
|
498 |
+
self.projection_matrix.copy_(projections)
|
499 |
+
del projections
|
500 |
+
|
501 |
+
def forward(self, q, k, v):
|
502 |
+
device = q.device
|
503 |
+
|
504 |
+
if self.no_projection:
|
505 |
+
q = q.softmax(dim=-1)
|
506 |
+
k = torch.exp(k) if self.causal else k.softmax(dim=-2)
|
507 |
+
else:
|
508 |
+
create_kernel = partial(
|
509 |
+
softmax_kernel, projection_matrix=self.projection_matrix, device=device
|
510 |
+
)
|
511 |
+
|
512 |
+
q = create_kernel(q, is_query=True)
|
513 |
+
k = create_kernel(k, is_query=False)
|
514 |
+
|
515 |
+
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
|
516 |
+
if v is None:
|
517 |
+
out = attn_fn(q, k, None)
|
518 |
+
return out
|
519 |
+
else:
|
520 |
+
out = attn_fn(q, k, v)
|
521 |
+
return out
|
522 |
+
|
523 |
+
|
524 |
+
class SelfAttention(nn.Module):
|
525 |
+
def __init__(
|
526 |
+
self,
|
527 |
+
dim,
|
528 |
+
causal=False,
|
529 |
+
heads=8,
|
530 |
+
dim_head=64,
|
531 |
+
local_heads=0,
|
532 |
+
local_window_size=256,
|
533 |
+
nb_features=None,
|
534 |
+
feature_redraw_interval=1000,
|
535 |
+
generalized_attention=False,
|
536 |
+
kernel_fn=nn.ReLU(),
|
537 |
+
qr_uniform_q=False,
|
538 |
+
dropout=0.0,
|
539 |
+
no_projection=False,
|
540 |
+
):
|
541 |
+
super().__init__()
|
542 |
+
assert dim % heads == 0, "dimension must be divisible by number of heads"
|
543 |
+
dim_head = default(dim_head, dim // heads)
|
544 |
+
inner_dim = dim_head * heads
|
545 |
+
self.fast_attention = FastAttention(
|
546 |
+
dim_head,
|
547 |
+
nb_features,
|
548 |
+
causal=causal,
|
549 |
+
generalized_attention=generalized_attention,
|
550 |
+
kernel_fn=kernel_fn,
|
551 |
+
qr_uniform_q=qr_uniform_q,
|
552 |
+
no_projection=no_projection,
|
553 |
+
)
|
554 |
+
|
555 |
+
self.heads = heads
|
556 |
+
self.global_heads = heads - local_heads
|
557 |
+
self.local_attn = (
|
558 |
+
LocalAttention(
|
559 |
+
window_size=local_window_size,
|
560 |
+
causal=causal,
|
561 |
+
autopad=True,
|
562 |
+
dropout=dropout,
|
563 |
+
look_forward=int(not causal),
|
564 |
+
rel_pos_emb_config=(dim_head, local_heads),
|
565 |
+
)
|
566 |
+
if local_heads > 0
|
567 |
+
else None
|
568 |
+
)
|
569 |
+
|
570 |
+
self.to_q = nn.Linear(dim, inner_dim)
|
571 |
+
self.to_k = nn.Linear(dim, inner_dim)
|
572 |
+
self.to_v = nn.Linear(dim, inner_dim)
|
573 |
+
self.to_out = nn.Linear(inner_dim, dim)
|
574 |
+
self.dropout = nn.Dropout(dropout)
|
575 |
+
|
576 |
+
@torch.no_grad()
|
577 |
+
def redraw_projection_matrix(self):
|
578 |
+
self.fast_attention.redraw_projection_matrix()
|
579 |
+
|
580 |
+
def forward(
|
581 |
+
self,
|
582 |
+
x,
|
583 |
+
context=None,
|
584 |
+
mask=None,
|
585 |
+
context_mask=None,
|
586 |
+
name=None,
|
587 |
+
inference=False,
|
588 |
+
**kwargs,
|
589 |
+
):
|
590 |
+
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
|
591 |
+
|
592 |
+
cross_attend = exists(context)
|
593 |
+
|
594 |
+
context = default(context, x)
|
595 |
+
context_mask = default(context_mask, mask) if not cross_attend else context_mask
|
596 |
+
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
|
597 |
+
|
598 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
599 |
+
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
|
600 |
+
|
601 |
+
attn_outs = []
|
602 |
+
if not empty(q):
|
603 |
+
if exists(context_mask):
|
604 |
+
global_mask = context_mask[:, None, :, None]
|
605 |
+
v.masked_fill_(~global_mask, 0.0)
|
606 |
+
if cross_attend:
|
607 |
+
pass
|
608 |
+
else:
|
609 |
+
out = self.fast_attention(q, k, v)
|
610 |
+
attn_outs.append(out)
|
611 |
+
|
612 |
+
if not empty(lq):
|
613 |
+
assert (
|
614 |
+
not cross_attend
|
615 |
+
), "local attention is not compatible with cross attention"
|
616 |
+
out = self.local_attn(lq, lk, lv, input_mask=mask)
|
617 |
+
attn_outs.append(out)
|
618 |
+
|
619 |
+
out = torch.cat(attn_outs, dim=1)
|
620 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
621 |
+
out = self.to_out(out)
|
622 |
+
return self.dropout(out)
|
623 |
+
|
624 |
+
|
625 |
+
def l2_regularization(model, l2_alpha):
|
626 |
+
l2_loss = []
|
627 |
+
for module in model.modules():
|
628 |
+
if type(module) is nn.Conv2d:
|
629 |
+
l2_loss.append((module.weight**2).sum() / 2.0)
|
630 |
+
return l2_alpha * sum(l2_loss)
|
631 |
+
|
632 |
+
|
633 |
+
class FCPE(nn.Module):
|
634 |
+
def __init__(
|
635 |
+
self,
|
636 |
+
input_channel=128,
|
637 |
+
out_dims=360,
|
638 |
+
n_layers=12,
|
639 |
+
n_chans=512,
|
640 |
+
use_siren=False,
|
641 |
+
use_full=False,
|
642 |
+
loss_mse_scale=10,
|
643 |
+
loss_l2_regularization=False,
|
644 |
+
loss_l2_regularization_scale=1,
|
645 |
+
loss_grad1_mse=False,
|
646 |
+
loss_grad1_mse_scale=1,
|
647 |
+
f0_max=1975.5,
|
648 |
+
f0_min=32.70,
|
649 |
+
confidence=False,
|
650 |
+
threshold=0.05,
|
651 |
+
use_input_conv=True,
|
652 |
+
):
|
653 |
+
super().__init__()
|
654 |
+
if use_siren is True:
|
655 |
+
raise ValueError("Siren is not supported yet.")
|
656 |
+
if use_full is True:
|
657 |
+
raise ValueError("Full model is not supported yet.")
|
658 |
+
|
659 |
+
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
|
660 |
+
self.loss_l2_regularization = (
|
661 |
+
loss_l2_regularization if (loss_l2_regularization is not None) else False
|
662 |
+
)
|
663 |
+
self.loss_l2_regularization_scale = (
|
664 |
+
loss_l2_regularization_scale
|
665 |
+
if (loss_l2_regularization_scale is not None)
|
666 |
+
else 1
|
667 |
+
)
|
668 |
+
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
|
669 |
+
self.loss_grad1_mse_scale = (
|
670 |
+
loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
|
671 |
+
)
|
672 |
+
self.f0_max = f0_max if (f0_max is not None) else 1975.5
|
673 |
+
self.f0_min = f0_min if (f0_min is not None) else 32.70
|
674 |
+
self.confidence = confidence if (confidence is not None) else False
|
675 |
+
self.threshold = threshold if (threshold is not None) else 0.05
|
676 |
+
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
|
677 |
+
|
678 |
+
self.cent_table_b = torch.Tensor(
|
679 |
+
np.linspace(
|
680 |
+
self.f0_to_cent(torch.Tensor([f0_min]))[0],
|
681 |
+
self.f0_to_cent(torch.Tensor([f0_max]))[0],
|
682 |
+
out_dims,
|
683 |
+
)
|
684 |
+
)
|
685 |
+
self.register_buffer("cent_table", self.cent_table_b)
|
686 |
+
|
687 |
+
# conv in stack
|
688 |
+
_leaky = nn.LeakyReLU()
|
689 |
+
self.stack = nn.Sequential(
|
690 |
+
nn.Conv1d(input_channel, n_chans, 3, 1, 1),
|
691 |
+
nn.GroupNorm(4, n_chans),
|
692 |
+
_leaky,
|
693 |
+
nn.Conv1d(n_chans, n_chans, 3, 1, 1),
|
694 |
+
)
|
695 |
+
|
696 |
+
# transformer
|
697 |
+
self.decoder = PCmer(
|
698 |
+
num_layers=n_layers,
|
699 |
+
num_heads=8,
|
700 |
+
dim_model=n_chans,
|
701 |
+
dim_keys=n_chans,
|
702 |
+
dim_values=n_chans,
|
703 |
+
residual_dropout=0.1,
|
704 |
+
attention_dropout=0.1,
|
705 |
+
)
|
706 |
+
self.norm = nn.LayerNorm(n_chans)
|
707 |
+
|
708 |
+
# out
|
709 |
+
self.n_out = out_dims
|
710 |
+
self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out))
|
711 |
+
|
712 |
+
def forward(
|
713 |
+
self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax"
|
714 |
+
):
|
715 |
+
"""
|
716 |
+
input:
|
717 |
+
B x n_frames x n_unit
|
718 |
+
return:
|
719 |
+
dict of B x n_frames x feat
|
720 |
+
"""
|
721 |
+
if cdecoder == "argmax":
|
722 |
+
self.cdecoder = self.cents_decoder
|
723 |
+
elif cdecoder == "local_argmax":
|
724 |
+
self.cdecoder = self.cents_local_decoder
|
725 |
+
if self.use_input_conv:
|
726 |
+
x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
|
727 |
+
else:
|
728 |
+
x = mel
|
729 |
+
x = self.decoder(x)
|
730 |
+
x = self.norm(x)
|
731 |
+
x = self.dense_out(x) # [B,N,D]
|
732 |
+
x = torch.sigmoid(x)
|
733 |
+
if not infer:
|
734 |
+
gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
|
735 |
+
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
|
736 |
+
loss_all = self.loss_mse_scale * F.binary_cross_entropy(
|
737 |
+
x, gt_cent_f0
|
738 |
+
) # bce loss
|
739 |
+
# l2 regularization
|
740 |
+
if self.loss_l2_regularization:
|
741 |
+
loss_all = loss_all + l2_regularization(
|
742 |
+
model=self, l2_alpha=self.loss_l2_regularization_scale
|
743 |
+
)
|
744 |
+
x = loss_all
|
745 |
+
if infer:
|
746 |
+
x = self.cdecoder(x)
|
747 |
+
x = self.cent_to_f0(x)
|
748 |
+
if not return_hz_f0:
|
749 |
+
x = (1 + x / 700).log()
|
750 |
+
return x
|
751 |
+
|
752 |
+
def cents_decoder(self, y, mask=True):
|
753 |
+
B, N, _ = y.size()
|
754 |
+
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
755 |
+
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(
|
756 |
+
y, dim=-1, keepdim=True
|
757 |
+
) # cents: [B,N,1]
|
758 |
+
if mask:
|
759 |
+
confident = torch.max(y, dim=-1, keepdim=True)[0]
|
760 |
+
confident_mask = torch.ones_like(confident)
|
761 |
+
confident_mask[confident <= self.threshold] = float("-INF")
|
762 |
+
rtn = rtn * confident_mask
|
763 |
+
if self.confidence:
|
764 |
+
return rtn, confident
|
765 |
+
else:
|
766 |
+
return rtn
|
767 |
+
|
768 |
+
def cents_local_decoder(self, y, mask=True):
|
769 |
+
B, N, _ = y.size()
|
770 |
+
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
771 |
+
confident, max_index = torch.max(y, dim=-1, keepdim=True)
|
772 |
+
local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4)
|
773 |
+
local_argmax_index[local_argmax_index < 0] = 0
|
774 |
+
local_argmax_index[local_argmax_index >= self.n_out] = self.n_out - 1
|
775 |
+
ci_l = torch.gather(ci, -1, local_argmax_index)
|
776 |
+
y_l = torch.gather(y, -1, local_argmax_index)
|
777 |
+
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(
|
778 |
+
y_l, dim=-1, keepdim=True
|
779 |
+
) # cents: [B,N,1]
|
780 |
+
if mask:
|
781 |
+
confident_mask = torch.ones_like(confident)
|
782 |
+
confident_mask[confident <= self.threshold] = float("-INF")
|
783 |
+
rtn = rtn * confident_mask
|
784 |
+
if self.confidence:
|
785 |
+
return rtn, confident
|
786 |
+
else:
|
787 |
+
return rtn
|
788 |
+
|
789 |
+
def cent_to_f0(self, cent):
|
790 |
+
return 10.0 * 2 ** (cent / 1200.0)
|
791 |
+
|
792 |
+
def f0_to_cent(self, f0):
|
793 |
+
return 1200.0 * torch.log2(f0 / 10.0)
|
794 |
+
|
795 |
+
def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
|
796 |
+
mask = (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0)))
|
797 |
+
B, N, _ = cents.size()
|
798 |
+
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
799 |
+
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
|
800 |
+
|
801 |
+
|
802 |
+
class FCPEInfer:
|
803 |
+
def __init__(self, model_path, device=None, dtype=torch.float32):
|
804 |
+
if device is None:
|
805 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
806 |
+
self.device = device
|
807 |
+
ckpt = torch.load(model_path, map_location=torch.device(self.device))
|
808 |
+
self.args = DotDict(ckpt["config"])
|
809 |
+
self.dtype = dtype
|
810 |
+
model = FCPE(
|
811 |
+
input_channel=self.args.model.input_channel,
|
812 |
+
out_dims=self.args.model.out_dims,
|
813 |
+
n_layers=self.args.model.n_layers,
|
814 |
+
n_chans=self.args.model.n_chans,
|
815 |
+
use_siren=self.args.model.use_siren,
|
816 |
+
use_full=self.args.model.use_full,
|
817 |
+
loss_mse_scale=self.args.loss.loss_mse_scale,
|
818 |
+
loss_l2_regularization=self.args.loss.loss_l2_regularization,
|
819 |
+
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
|
820 |
+
loss_grad1_mse=self.args.loss.loss_grad1_mse,
|
821 |
+
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
|
822 |
+
f0_max=self.args.model.f0_max,
|
823 |
+
f0_min=self.args.model.f0_min,
|
824 |
+
confidence=self.args.model.confidence,
|
825 |
+
)
|
826 |
+
model.to(self.device).to(self.dtype)
|
827 |
+
model.load_state_dict(ckpt["model"])
|
828 |
+
model.eval()
|
829 |
+
self.model = model
|
830 |
+
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
|
831 |
+
|
832 |
+
@torch.no_grad()
|
833 |
+
def __call__(self, audio, sr, threshold=0.05):
|
834 |
+
self.model.threshold = threshold
|
835 |
+
audio = audio[None, :]
|
836 |
+
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
|
837 |
+
f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
|
838 |
+
return f0
|
839 |
+
|
840 |
+
|
841 |
+
class Wav2Mel:
|
842 |
+
|
843 |
+
def __init__(self, args, device=None, dtype=torch.float32):
|
844 |
+
# self.args = args
|
845 |
+
self.sampling_rate = args.mel.sampling_rate
|
846 |
+
self.hop_size = args.mel.hop_size
|
847 |
+
if device is None:
|
848 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
849 |
+
self.device = device
|
850 |
+
self.dtype = dtype
|
851 |
+
self.stft = STFT(
|
852 |
+
args.mel.sampling_rate,
|
853 |
+
args.mel.num_mels,
|
854 |
+
args.mel.n_fft,
|
855 |
+
args.mel.win_size,
|
856 |
+
args.mel.hop_size,
|
857 |
+
args.mel.fmin,
|
858 |
+
args.mel.fmax,
|
859 |
+
)
|
860 |
+
self.resample_kernel = {}
|
861 |
+
|
862 |
+
def extract_nvstft(self, audio, keyshift=0, train=False):
|
863 |
+
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(
|
864 |
+
1, 2
|
865 |
+
) # B, n_frames, bins
|
866 |
+
return mel
|
867 |
+
|
868 |
+
def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
|
869 |
+
audio = audio.to(self.dtype).to(self.device)
|
870 |
+
# resample
|
871 |
+
if sample_rate == self.sampling_rate:
|
872 |
+
audio_res = audio
|
873 |
+
else:
|
874 |
+
key_str = str(sample_rate)
|
875 |
+
if key_str not in self.resample_kernel:
|
876 |
+
self.resample_kernel[key_str] = Resample(
|
877 |
+
sample_rate, self.sampling_rate, lowpass_filter_width=128
|
878 |
+
)
|
879 |
+
self.resample_kernel[key_str] = (
|
880 |
+
self.resample_kernel[key_str].to(self.dtype).to(self.device)
|
881 |
+
)
|
882 |
+
audio_res = self.resample_kernel[key_str](audio)
|
883 |
+
|
884 |
+
# extract
|
885 |
+
mel = self.extract_nvstft(
|
886 |
+
audio_res, keyshift=keyshift, train=train
|
887 |
+
) # B, n_frames, bins
|
888 |
+
n_frames = int(audio.shape[1] // self.hop_size) + 1
|
889 |
+
if n_frames > int(mel.shape[1]):
|
890 |
+
mel = torch.cat((mel, mel[:, -1:, :]), 1)
|
891 |
+
if n_frames < int(mel.shape[1]):
|
892 |
+
mel = mel[:, :n_frames, :]
|
893 |
+
return mel
|
894 |
+
|
895 |
+
def __call__(self, audio, sample_rate, keyshift=0, train=False):
|
896 |
+
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
|
897 |
+
|
898 |
+
|
899 |
+
class DotDict(dict):
|
900 |
+
def __getattr__(*args):
|
901 |
+
val = dict.get(*args)
|
902 |
+
return DotDict(val) if type(val) is dict else val
|
903 |
+
|
904 |
+
__setattr__ = dict.__setitem__
|
905 |
+
__delattr__ = dict.__delitem__
|
906 |
+
|
907 |
+
|
908 |
+
class F0Predictor(object):
|
909 |
+
def compute_f0(self, wav, p_len):
|
910 |
+
"""
|
911 |
+
input: wav:[signal_length]
|
912 |
+
p_len:int
|
913 |
+
output: f0:[signal_length//hop_length]
|
914 |
+
"""
|
915 |
+
pass
|
916 |
+
|
917 |
+
def compute_f0_uv(self, wav, p_len):
|
918 |
+
"""
|
919 |
+
input: wav:[signal_length]
|
920 |
+
p_len:int
|
921 |
+
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
922 |
+
"""
|
923 |
+
pass
|
924 |
+
|
925 |
+
|
926 |
+
class FCPEF0Predictor(F0Predictor):
|
927 |
+
def __init__(
|
928 |
+
self,
|
929 |
+
model_path,
|
930 |
+
hop_length=512,
|
931 |
+
f0_min=50,
|
932 |
+
f0_max=1100,
|
933 |
+
dtype=torch.float32,
|
934 |
+
device=None,
|
935 |
+
sampling_rate=44100,
|
936 |
+
threshold=0.05,
|
937 |
+
):
|
938 |
+
self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
|
939 |
+
self.hop_length = hop_length
|
940 |
+
self.f0_min = f0_min
|
941 |
+
self.f0_max = f0_max
|
942 |
+
if device is None:
|
943 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
944 |
+
else:
|
945 |
+
self.device = device
|
946 |
+
self.threshold = threshold
|
947 |
+
self.sampling_rate = sampling_rate
|
948 |
+
self.dtype = dtype
|
949 |
+
self.name = "fcpe"
|
950 |
+
|
951 |
+
def repeat_expand(
|
952 |
+
self,
|
953 |
+
content: Union[torch.Tensor, np.ndarray],
|
954 |
+
target_len: int,
|
955 |
+
mode: str = "nearest",
|
956 |
+
):
|
957 |
+
ndim = content.ndim
|
958 |
+
|
959 |
+
if content.ndim == 1:
|
960 |
+
content = content[None, None]
|
961 |
+
elif content.ndim == 2:
|
962 |
+
content = content[None]
|
963 |
+
|
964 |
+
assert content.ndim == 3
|
965 |
+
|
966 |
+
is_np = isinstance(content, np.ndarray)
|
967 |
+
if is_np:
|
968 |
+
content = torch.from_numpy(content)
|
969 |
+
|
970 |
+
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
|
971 |
+
|
972 |
+
if is_np:
|
973 |
+
results = results.numpy()
|
974 |
+
|
975 |
+
if ndim == 1:
|
976 |
+
return results[0, 0]
|
977 |
+
elif ndim == 2:
|
978 |
+
return results[0]
|
979 |
+
|
980 |
+
def post_process(self, x, sampling_rate, f0, pad_to):
|
981 |
+
if isinstance(f0, np.ndarray):
|
982 |
+
f0 = torch.from_numpy(f0).float().to(x.device)
|
983 |
+
|
984 |
+
if pad_to is None:
|
985 |
+
return f0
|
986 |
+
|
987 |
+
f0 = self.repeat_expand(f0, pad_to)
|
988 |
+
|
989 |
+
vuv_vector = torch.zeros_like(f0)
|
990 |
+
vuv_vector[f0 > 0.0] = 1.0
|
991 |
+
vuv_vector[f0 <= 0.0] = 0.0
|
992 |
+
|
993 |
+
# 去掉0频率, 并线性插值
|
994 |
+
nzindex = torch.nonzero(f0).squeeze()
|
995 |
+
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
|
996 |
+
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
|
997 |
+
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
|
998 |
+
|
999 |
+
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
|
1000 |
+
|
1001 |
+
if f0.shape[0] <= 0:
|
1002 |
+
return (
|
1003 |
+
torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(),
|
1004 |
+
vuv_vector.cpu().numpy(),
|
1005 |
+
)
|
1006 |
+
if f0.shape[0] == 1:
|
1007 |
+
return (
|
1008 |
+
torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0]
|
1009 |
+
).cpu().numpy(), vuv_vector.cpu().numpy()
|
1010 |
+
|
1011 |
+
# 大概可以用 torch 重写?
|
1012 |
+
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
|
1013 |
+
# vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
|
1014 |
+
|
1015 |
+
return f0, vuv_vector.cpu().numpy()
|
1016 |
+
|
1017 |
+
def compute_f0(self, wav, p_len=None):
|
1018 |
+
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
1019 |
+
if p_len is None:
|
1020 |
+
print("fcpe p_len is None")
|
1021 |
+
p_len = x.shape[0] // self.hop_length
|
1022 |
+
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0]
|
1023 |
+
if torch.all(f0 == 0):
|
1024 |
+
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
1025 |
+
return rtn, rtn
|
1026 |
+
return self.post_process(x, self.sampling_rate, f0, p_len)[0]
|
1027 |
+
|
1028 |
+
def compute_f0_uv(self, wav, p_len=None):
|
1029 |
+
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
1030 |
+
if p_len is None:
|
1031 |
+
p_len = x.shape[0] // self.hop_length
|
1032 |
+
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0]
|
1033 |
+
if torch.all(f0 == 0):
|
1034 |
+
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
1035 |
+
return rtn, rtn
|
1036 |
+
return self.post_process(x, self.sampling_rate, f0, p_len)
|
RMVPE.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys, torch, numpy as np, traceback, pdb
|
2 |
+
import torch.nn as nn
|
3 |
+
from time import time as ttime
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
class BiGRU(nn.Module):
|
8 |
+
def __init__(self, input_features, hidden_features, num_layers):
|
9 |
+
super(BiGRU, self).__init__()
|
10 |
+
self.gru = nn.GRU(
|
11 |
+
input_features,
|
12 |
+
hidden_features,
|
13 |
+
num_layers=num_layers,
|
14 |
+
batch_first=True,
|
15 |
+
bidirectional=True,
|
16 |
+
)
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
return self.gru(x)[0]
|
20 |
+
|
21 |
+
|
22 |
+
class ConvBlockRes(nn.Module):
|
23 |
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
24 |
+
super(ConvBlockRes, self).__init__()
|
25 |
+
self.conv = nn.Sequential(
|
26 |
+
nn.Conv2d(
|
27 |
+
in_channels=in_channels,
|
28 |
+
out_channels=out_channels,
|
29 |
+
kernel_size=(3, 3),
|
30 |
+
stride=(1, 1),
|
31 |
+
padding=(1, 1),
|
32 |
+
bias=False,
|
33 |
+
),
|
34 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
35 |
+
nn.ReLU(),
|
36 |
+
nn.Conv2d(
|
37 |
+
in_channels=out_channels,
|
38 |
+
out_channels=out_channels,
|
39 |
+
kernel_size=(3, 3),
|
40 |
+
stride=(1, 1),
|
41 |
+
padding=(1, 1),
|
42 |
+
bias=False,
|
43 |
+
),
|
44 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
45 |
+
nn.ReLU(),
|
46 |
+
)
|
47 |
+
if in_channels != out_channels:
|
48 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
49 |
+
self.is_shortcut = True
|
50 |
+
else:
|
51 |
+
self.is_shortcut = False
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
if self.is_shortcut:
|
55 |
+
return self.conv(x) + self.shortcut(x)
|
56 |
+
else:
|
57 |
+
return self.conv(x) + x
|
58 |
+
|
59 |
+
|
60 |
+
class Encoder(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
in_channels,
|
64 |
+
in_size,
|
65 |
+
n_encoders,
|
66 |
+
kernel_size,
|
67 |
+
n_blocks,
|
68 |
+
out_channels=16,
|
69 |
+
momentum=0.01,
|
70 |
+
):
|
71 |
+
super(Encoder, self).__init__()
|
72 |
+
self.n_encoders = n_encoders
|
73 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
74 |
+
self.layers = nn.ModuleList()
|
75 |
+
self.latent_channels = []
|
76 |
+
for i in range(self.n_encoders):
|
77 |
+
self.layers.append(
|
78 |
+
ResEncoderBlock(
|
79 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
80 |
+
)
|
81 |
+
)
|
82 |
+
self.latent_channels.append([out_channels, in_size])
|
83 |
+
in_channels = out_channels
|
84 |
+
out_channels *= 2
|
85 |
+
in_size //= 2
|
86 |
+
self.out_size = in_size
|
87 |
+
self.out_channel = out_channels
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
concat_tensors = []
|
91 |
+
x = self.bn(x)
|
92 |
+
for i in range(self.n_encoders):
|
93 |
+
_, x = self.layers[i](x)
|
94 |
+
concat_tensors.append(_)
|
95 |
+
return x, concat_tensors
|
96 |
+
|
97 |
+
|
98 |
+
class ResEncoderBlock(nn.Module):
|
99 |
+
def __init__(
|
100 |
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
101 |
+
):
|
102 |
+
super(ResEncoderBlock, self).__init__()
|
103 |
+
self.n_blocks = n_blocks
|
104 |
+
self.conv = nn.ModuleList()
|
105 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
106 |
+
for i in range(n_blocks - 1):
|
107 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
108 |
+
self.kernel_size = kernel_size
|
109 |
+
if self.kernel_size is not None:
|
110 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
for i in range(self.n_blocks):
|
114 |
+
x = self.conv[i](x)
|
115 |
+
if self.kernel_size is not None:
|
116 |
+
return x, self.pool(x)
|
117 |
+
else:
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
class Intermediate(nn.Module): #
|
122 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
123 |
+
super(Intermediate, self).__init__()
|
124 |
+
self.n_inters = n_inters
|
125 |
+
self.layers = nn.ModuleList()
|
126 |
+
self.layers.append(
|
127 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
128 |
+
)
|
129 |
+
for i in range(self.n_inters - 1):
|
130 |
+
self.layers.append(
|
131 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
132 |
+
)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
for i in range(self.n_inters):
|
136 |
+
x = self.layers[i](x)
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
class ResDecoderBlock(nn.Module):
|
141 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
142 |
+
super(ResDecoderBlock, self).__init__()
|
143 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
144 |
+
self.n_blocks = n_blocks
|
145 |
+
self.conv1 = nn.Sequential(
|
146 |
+
nn.ConvTranspose2d(
|
147 |
+
in_channels=in_channels,
|
148 |
+
out_channels=out_channels,
|
149 |
+
kernel_size=(3, 3),
|
150 |
+
stride=stride,
|
151 |
+
padding=(1, 1),
|
152 |
+
output_padding=out_padding,
|
153 |
+
bias=False,
|
154 |
+
),
|
155 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
156 |
+
nn.ReLU(),
|
157 |
+
)
|
158 |
+
self.conv2 = nn.ModuleList()
|
159 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
160 |
+
for i in range(n_blocks - 1):
|
161 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
162 |
+
|
163 |
+
def forward(self, x, concat_tensor):
|
164 |
+
x = self.conv1(x)
|
165 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
166 |
+
for i in range(self.n_blocks):
|
167 |
+
x = self.conv2[i](x)
|
168 |
+
return x
|
169 |
+
|
170 |
+
|
171 |
+
class Decoder(nn.Module):
|
172 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
173 |
+
super(Decoder, self).__init__()
|
174 |
+
self.layers = nn.ModuleList()
|
175 |
+
self.n_decoders = n_decoders
|
176 |
+
for i in range(self.n_decoders):
|
177 |
+
out_channels = in_channels // 2
|
178 |
+
self.layers.append(
|
179 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
180 |
+
)
|
181 |
+
in_channels = out_channels
|
182 |
+
|
183 |
+
def forward(self, x, concat_tensors):
|
184 |
+
for i in range(self.n_decoders):
|
185 |
+
x = self.layers[i](x, concat_tensors[-1 - i])
|
186 |
+
return x
|
187 |
+
|
188 |
+
|
189 |
+
class DeepUnet(nn.Module):
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
kernel_size,
|
193 |
+
n_blocks,
|
194 |
+
en_de_layers=5,
|
195 |
+
inter_layers=4,
|
196 |
+
in_channels=1,
|
197 |
+
en_out_channels=16,
|
198 |
+
):
|
199 |
+
super(DeepUnet, self).__init__()
|
200 |
+
self.encoder = Encoder(
|
201 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
202 |
+
)
|
203 |
+
self.intermediate = Intermediate(
|
204 |
+
self.encoder.out_channel // 2,
|
205 |
+
self.encoder.out_channel,
|
206 |
+
inter_layers,
|
207 |
+
n_blocks,
|
208 |
+
)
|
209 |
+
self.decoder = Decoder(
|
210 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
211 |
+
)
|
212 |
+
|
213 |
+
def forward(self, x):
|
214 |
+
x, concat_tensors = self.encoder(x)
|
215 |
+
x = self.intermediate(x)
|
216 |
+
x = self.decoder(x, concat_tensors)
|
217 |
+
return x
|
218 |
+
|
219 |
+
|
220 |
+
class E2E(nn.Module):
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
n_blocks,
|
224 |
+
n_gru,
|
225 |
+
kernel_size,
|
226 |
+
en_de_layers=5,
|
227 |
+
inter_layers=4,
|
228 |
+
in_channels=1,
|
229 |
+
en_out_channels=16,
|
230 |
+
):
|
231 |
+
super(E2E, self).__init__()
|
232 |
+
self.unet = DeepUnet(
|
233 |
+
kernel_size,
|
234 |
+
n_blocks,
|
235 |
+
en_de_layers,
|
236 |
+
inter_layers,
|
237 |
+
in_channels,
|
238 |
+
en_out_channels,
|
239 |
+
)
|
240 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
241 |
+
if n_gru:
|
242 |
+
self.fc = nn.Sequential(
|
243 |
+
BiGRU(3 * 128, 256, n_gru),
|
244 |
+
nn.Linear(512, 360),
|
245 |
+
nn.Dropout(0.25),
|
246 |
+
nn.Sigmoid(),
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
self.fc = nn.Sequential(
|
250 |
+
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
251 |
+
)
|
252 |
+
|
253 |
+
def forward(self, mel):
|
254 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
255 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
256 |
+
x = self.fc(x)
|
257 |
+
return x
|
258 |
+
|
259 |
+
|
260 |
+
from librosa.filters import mel
|
261 |
+
|
262 |
+
|
263 |
+
class MelSpectrogram(torch.nn.Module):
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
is_half,
|
267 |
+
n_mel_channels,
|
268 |
+
sampling_rate,
|
269 |
+
win_length,
|
270 |
+
hop_length,
|
271 |
+
n_fft=None,
|
272 |
+
mel_fmin=0,
|
273 |
+
mel_fmax=None,
|
274 |
+
clamp=1e-5,
|
275 |
+
):
|
276 |
+
super().__init__()
|
277 |
+
n_fft = win_length if n_fft is None else n_fft
|
278 |
+
self.hann_window = {}
|
279 |
+
mel_basis = mel(
|
280 |
+
sr=sampling_rate,
|
281 |
+
n_fft=n_fft,
|
282 |
+
n_mels=n_mel_channels,
|
283 |
+
fmin=mel_fmin,
|
284 |
+
fmax=mel_fmax,
|
285 |
+
htk=True,
|
286 |
+
)
|
287 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
288 |
+
self.register_buffer("mel_basis", mel_basis)
|
289 |
+
self.n_fft = win_length if n_fft is None else n_fft
|
290 |
+
self.hop_length = hop_length
|
291 |
+
self.win_length = win_length
|
292 |
+
self.sampling_rate = sampling_rate
|
293 |
+
self.n_mel_channels = n_mel_channels
|
294 |
+
self.clamp = clamp
|
295 |
+
self.is_half = is_half
|
296 |
+
|
297 |
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
298 |
+
factor = 2 ** (keyshift / 12)
|
299 |
+
n_fft_new = int(np.round(self.n_fft * factor))
|
300 |
+
win_length_new = int(np.round(self.win_length * factor))
|
301 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
302 |
+
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
303 |
+
if keyshift_key not in self.hann_window:
|
304 |
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
305 |
+
audio.device
|
306 |
+
)
|
307 |
+
fft = torch.stft(
|
308 |
+
audio,
|
309 |
+
n_fft=n_fft_new,
|
310 |
+
hop_length=hop_length_new,
|
311 |
+
win_length=win_length_new,
|
312 |
+
window=self.hann_window[keyshift_key],
|
313 |
+
center=center,
|
314 |
+
return_complex=True,
|
315 |
+
)
|
316 |
+
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
317 |
+
if keyshift != 0:
|
318 |
+
size = self.n_fft // 2 + 1
|
319 |
+
resize = magnitude.size(1)
|
320 |
+
if resize < size:
|
321 |
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
322 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
323 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
324 |
+
if self.is_half == True:
|
325 |
+
mel_output = mel_output.half()
|
326 |
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
327 |
+
return log_mel_spec
|
328 |
+
|
329 |
+
|
330 |
+
class RMVPE:
|
331 |
+
def __init__(self, model_path, is_half, device=None):
|
332 |
+
self.resample_kernel = {}
|
333 |
+
model = E2E(4, 1, (2, 2))
|
334 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
335 |
+
model.load_state_dict(ckpt)
|
336 |
+
model.eval()
|
337 |
+
if is_half:
|
338 |
+
model = model.half()
|
339 |
+
self.model = model
|
340 |
+
self.is_half = is_half
|
341 |
+
self.device = device if device else "cuda" if torch.cuda.is_available() else "cpu"
|
342 |
+
self.mel_extractor = MelSpectrogram(is_half, 128, 16000, 1024, 160, None, 30, 8000).to(self.device)
|
343 |
+
self.model = self.model.to(self.device)
|
344 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
345 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4))
|
346 |
+
|
347 |
+
def mel2hidden(self, mel):
|
348 |
+
with torch.no_grad():
|
349 |
+
n_frames = mel.shape[-1]
|
350 |
+
mel = mel.float()
|
351 |
+
mel = F.pad(mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect")
|
352 |
+
if self.is_half:
|
353 |
+
mel = mel.half()
|
354 |
+
hidden = self.model(mel)
|
355 |
+
return hidden[:, :n_frames]
|
356 |
+
|
357 |
+
def decode(self, hidden, thred=0.03):
|
358 |
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
359 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
360 |
+
f0[f0 == 10] = 0
|
361 |
+
return f0
|
362 |
+
|
363 |
+
def infer_from_audio(self, audio, thred=0.03):
|
364 |
+
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
365 |
+
mel = self.mel_extractor(audio, center=True)
|
366 |
+
hidden = self.mel2hidden(mel)
|
367 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
368 |
+
if self.is_half:
|
369 |
+
hidden = hidden.astype("float32")
|
370 |
+
f0 = self.decode(hidden, thred=thred)
|
371 |
+
return f0
|
372 |
+
|
373 |
+
def to_local_average_cents(self, salience, thred=0.05):
|
374 |
+
center = np.argmax(salience, axis=1)
|
375 |
+
salience = np.pad(salience, ((0, 0), (4, 4)))
|
376 |
+
center += 4
|
377 |
+
todo_salience = []
|
378 |
+
todo_cents_mapping = []
|
379 |
+
starts = center - 4
|
380 |
+
ends = center + 5
|
381 |
+
for idx in range(salience.shape[0]):
|
382 |
+
todo_salience.append(salience[:, starts[idx]:ends[idx]][idx])
|
383 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx]:ends[idx]])
|
384 |
+
todo_salience = np.array(todo_salience)
|
385 |
+
todo_cents_mapping = np.array(todo_cents_mapping)
|
386 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
387 |
+
weight_sum = np.sum(todo_salience, 1)
|
388 |
+
divided = product_sum / weight_sum
|
389 |
+
maxx = np.max(salience, axis=1)
|
390 |
+
divided[maxx <= thred] = 0
|
391 |
+
return divided
|
392 |
+
|
393 |
+
def infer_from_audio_with_pitch(self, audio, thred=0.03, f0_min=50, f0_max=1100):
|
394 |
+
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
395 |
+
mel = self.mel_extractor(audio, center=True)
|
396 |
+
hidden = self.mel2hidden(mel)
|
397 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
398 |
+
if self.is_half:
|
399 |
+
hidden = hidden.astype("float32")
|
400 |
+
f0 = self.decode(hidden, thred=thred)
|
401 |
+
f0[(f0 < f0_min) | (f0 > f0_max)] = 0
|
402 |
+
return f0
|