File size: 5,715 Bytes
1d1c937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
from functools import lru_cache
from random import randint
from typing import Any, Callable, Dict, List, Tuple

import clip
import cv2
import gradio as gr
import numpy as np
import PIL
import torch
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry

CHECKPOINT_PATH = "sam_vit_h_4b8939.pth"
MODEL_TYPE = "default"
MAX_WIDTH = MAX_HEIGHT = 800
CLIP_WIDTH = CLIP_HEIGHT = 300
THRESHOLD = 0.05
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


@lru_cache
def load_mask_generator() -> SamAutomaticMaskGenerator:
    sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH).to(device)
    mask_generator = SamAutomaticMaskGenerator(sam)
    return mask_generator


@lru_cache
def load_clip(
    name: str = "ViT-B-32.pt",
) -> Tuple[torch.nn.Module, Callable[[PIL.Image.Image], torch.Tensor]]:
    model_path = os.path.join(".", name)
    model, preprocess = clip.load(model_path, device=device)
    return model.to(device), preprocess


def adjust_image_size(image: np.ndarray) -> np.ndarray:
    height, width = image.shape[:2]
    if height > width:
        if height > MAX_HEIGHT:
            height, width = MAX_HEIGHT, int(MAX_HEIGHT / height * width)
    else:
        if width > MAX_WIDTH:
            height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
    image = cv2.resize(image, (width, height))
    return image


@torch.no_grad()
def get_scores(crops: List[PIL.Image.Image], query: str) -> torch.Tensor:
    model, preprocess = load_clip()
    preprocessed = [preprocess(crop) for crop in crops]
    preprocessed = torch.stack(preprocessed).to(device)
    token = clip.tokenize(query).to(device)
    img_features = model.encode_image(preprocessed)
    txt_features = model.encode_text(token)
    img_features /= img_features.norm(dim=-1, keepdim=True)
    txt_features /= txt_features.norm(dim=-1, keepdim=True)
    similarity = (100.0 * img_features @ txt_features.T).softmax(dim=0)
    return similarity


def filter_masks(
    image: np.ndarray,
    masks: List[Dict[str, Any]],
    predicted_iou_threshold: float,
    stability_score_threshold: float,
    query: str,
    clip_threshold: float,
) -> List[Dict[str, Any]]:
    cropped_masks: List[PIL.Image.Image] = []
    filtered_masks: List[Dict[str, Any]] = []

    for mask in masks:
        if (
            mask["predicted_iou"] < predicted_iou_threshold
            or mask["stability_score"] < stability_score_threshold
        ):
            continue

        filtered_masks.append(mask)

        x, y, w, h = mask["bbox"]
        crop = image[y: y + h, x: x + w]
        crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
        crop = PIL.Image.fromarray(np.uint8(crop * 255)).convert("RGB")
        crop.resize((CLIP_WIDTH, CLIP_HEIGHT))
        cropped_masks.append(crop)

    if query and filtered_masks:
        scores = get_scores(cropped_masks, query)
        filtered_masks = [
            filtered_masks[i]
            for i, score in enumerate(scores)
            if score > clip_threshold
        ]

    return filtered_masks


def draw_masks(
    image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
) -> np.ndarray:
    for mask in masks:
        color = [randint(127, 255) for _ in range(3)]

        # draw mask overlay
        colored_mask = np.expand_dims(mask["segmentation"], 0).repeat(3, axis=0)
        colored_mask = np.moveaxis(colored_mask, 0, -1)
        masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
        image_overlay = masked.filled()
        image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)

        # draw contour
        contours, _ = cv2.findContours(
            np.uint8(mask["segmentation"]), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
        )
        cv2.drawContours(image, contours, -1, (255, 0, 0), 2)
    return image


def segment(
    predicted_iou_threshold: float,
    stability_score_threshold: float,
    clip_threshold: float,
    image_path: str,
    query: str,
) -> PIL.ImageFile.ImageFile:
    mask_generator = load_mask_generator()
    # reduce the size to save gpu memory
    image = adjust_image_size(cv2.imread(image_path))
    masks = mask_generator.generate(image)
    masks = filter_masks(
        image,
        masks,
        predicted_iou_threshold,
        stability_score_threshold,
        query,
        clip_threshold,
    )
    image = draw_masks(image, masks)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = PIL.Image.fromarray(np.uint8(image)).convert("RGB")
    return image


demo = gr.Interface(
    fn=segment,
    inputs=[
        gr.Slider(0, 1, value=0.9, label="predicted_iou_threshold"),
        gr.Slider(0, 1, value=0.8, label="stability_score_threshold"),
        gr.Slider(0, 1, value=0.05, label="clip_threshold"),
        gr.Image(type="filepath"),
        "text",
    ],
    outputs="image",
    allow_flagging="never",
    title="Segment Anything with CLIP",
    examples=[
        [
            0.9,
            0.8,
            0.15,
            os.path.join(os.path.dirname(__file__), "examples/dog.jpg"),
            "A dog only",
        ],
        [
            0.9,
            0.8,
            0.1,
            os.path.join(os.path.dirname(__file__), "examples/city.jpg"),
            "A bridge on the water",
        ],
        [
            0.9,
            0.8,
            0.05,
            os.path.join(os.path.dirname(__file__), "examples/food.jpg"),
            "",
        ],
        [
            0.9,
            0.8,
            0.05,
            os.path.join(os.path.dirname(__file__), "examples/horse.jpg"),
            "horse",
        ],
    ],
)

if __name__ == "__main__":
    demo.launch()