Spaces:
Runtime error
Runtime error
File size: 5,715 Bytes
1d1c937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
from functools import lru_cache
from random import randint
from typing import Any, Callable, Dict, List, Tuple
import clip
import cv2
import gradio as gr
import numpy as np
import PIL
import torch
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
CHECKPOINT_PATH = "sam_vit_h_4b8939.pth"
MODEL_TYPE = "default"
MAX_WIDTH = MAX_HEIGHT = 800
CLIP_WIDTH = CLIP_HEIGHT = 300
THRESHOLD = 0.05
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@lru_cache
def load_mask_generator() -> SamAutomaticMaskGenerator:
sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH).to(device)
mask_generator = SamAutomaticMaskGenerator(sam)
return mask_generator
@lru_cache
def load_clip(
name: str = "ViT-B-32.pt",
) -> Tuple[torch.nn.Module, Callable[[PIL.Image.Image], torch.Tensor]]:
model_path = os.path.join(".", name)
model, preprocess = clip.load(model_path, device=device)
return model.to(device), preprocess
def adjust_image_size(image: np.ndarray) -> np.ndarray:
height, width = image.shape[:2]
if height > width:
if height > MAX_HEIGHT:
height, width = MAX_HEIGHT, int(MAX_HEIGHT / height * width)
else:
if width > MAX_WIDTH:
height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
image = cv2.resize(image, (width, height))
return image
@torch.no_grad()
def get_scores(crops: List[PIL.Image.Image], query: str) -> torch.Tensor:
model, preprocess = load_clip()
preprocessed = [preprocess(crop) for crop in crops]
preprocessed = torch.stack(preprocessed).to(device)
token = clip.tokenize(query).to(device)
img_features = model.encode_image(preprocessed)
txt_features = model.encode_text(token)
img_features /= img_features.norm(dim=-1, keepdim=True)
txt_features /= txt_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * img_features @ txt_features.T).softmax(dim=0)
return similarity
def filter_masks(
image: np.ndarray,
masks: List[Dict[str, Any]],
predicted_iou_threshold: float,
stability_score_threshold: float,
query: str,
clip_threshold: float,
) -> List[Dict[str, Any]]:
cropped_masks: List[PIL.Image.Image] = []
filtered_masks: List[Dict[str, Any]] = []
for mask in masks:
if (
mask["predicted_iou"] < predicted_iou_threshold
or mask["stability_score"] < stability_score_threshold
):
continue
filtered_masks.append(mask)
x, y, w, h = mask["bbox"]
crop = image[y: y + h, x: x + w]
crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
crop = PIL.Image.fromarray(np.uint8(crop * 255)).convert("RGB")
crop.resize((CLIP_WIDTH, CLIP_HEIGHT))
cropped_masks.append(crop)
if query and filtered_masks:
scores = get_scores(cropped_masks, query)
filtered_masks = [
filtered_masks[i]
for i, score in enumerate(scores)
if score > clip_threshold
]
return filtered_masks
def draw_masks(
image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
) -> np.ndarray:
for mask in masks:
color = [randint(127, 255) for _ in range(3)]
# draw mask overlay
colored_mask = np.expand_dims(mask["segmentation"], 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
image_overlay = masked.filled()
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
# draw contour
contours, _ = cv2.findContours(
np.uint8(mask["segmentation"]), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cv2.drawContours(image, contours, -1, (255, 0, 0), 2)
return image
def segment(
predicted_iou_threshold: float,
stability_score_threshold: float,
clip_threshold: float,
image_path: str,
query: str,
) -> PIL.ImageFile.ImageFile:
mask_generator = load_mask_generator()
# reduce the size to save gpu memory
image = adjust_image_size(cv2.imread(image_path))
masks = mask_generator.generate(image)
masks = filter_masks(
image,
masks,
predicted_iou_threshold,
stability_score_threshold,
query,
clip_threshold,
)
image = draw_masks(image, masks)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = PIL.Image.fromarray(np.uint8(image)).convert("RGB")
return image
demo = gr.Interface(
fn=segment,
inputs=[
gr.Slider(0, 1, value=0.9, label="predicted_iou_threshold"),
gr.Slider(0, 1, value=0.8, label="stability_score_threshold"),
gr.Slider(0, 1, value=0.05, label="clip_threshold"),
gr.Image(type="filepath"),
"text",
],
outputs="image",
allow_flagging="never",
title="Segment Anything with CLIP",
examples=[
[
0.9,
0.8,
0.15,
os.path.join(os.path.dirname(__file__), "examples/dog.jpg"),
"A dog only",
],
[
0.9,
0.8,
0.1,
os.path.join(os.path.dirname(__file__), "examples/city.jpg"),
"A bridge on the water",
],
[
0.9,
0.8,
0.05,
os.path.join(os.path.dirname(__file__), "examples/food.jpg"),
"",
],
[
0.9,
0.8,
0.05,
os.path.join(os.path.dirname(__file__), "examples/horse.jpg"),
"horse",
],
],
)
if __name__ == "__main__":
demo.launch()
|