Spaces:
Running
on
Zero
Running
on
Zero
tight-inversion
commited on
Commit
·
4ebc565
1
Parent(s):
c825591
Initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- .gitignore +146 -0
- app.py +461 -0
- eva_clip/__init__.py +11 -0
- eva_clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- eva_clip/constants.py +2 -0
- eva_clip/eva_vit_model.py +548 -0
- eva_clip/factory.py +517 -0
- eva_clip/hf_configs.py +57 -0
- eva_clip/hf_model.py +248 -0
- eva_clip/loss.py +138 -0
- eva_clip/model.py +439 -0
- eva_clip/model_configs/EVA01-CLIP-B-16.json +19 -0
- eva_clip/model_configs/EVA01-CLIP-g-14-plus.json +24 -0
- eva_clip/model_configs/EVA01-CLIP-g-14.json +24 -0
- eva_clip/model_configs/EVA02-CLIP-B-16.json +29 -0
- eva_clip/model_configs/EVA02-CLIP-L-14-336.json +29 -0
- eva_clip/model_configs/EVA02-CLIP-L-14.json +29 -0
- eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json +25 -0
- eva_clip/model_configs/EVA02-CLIP-bigE-14.json +25 -0
- eva_clip/modified_resnet.py +181 -0
- eva_clip/openai.py +144 -0
- eva_clip/pretrained.py +332 -0
- eva_clip/rope.py +137 -0
- eva_clip/timm_model.py +122 -0
- eva_clip/tokenizer.py +201 -0
- eva_clip/transform.py +103 -0
- eva_clip/transformer.py +737 -0
- eva_clip/utils.py +326 -0
- example_inputs/unsplash/baruk-granda-cfLL_jHQ-Iw-unsplash.jpg +3 -0
- example_inputs/unsplash/gus-tu-njana-Mf4MN7MZqcE-unsplash.jpg +3 -0
- example_inputs/unsplash/lhon-karwan-11tbHtK5STE-unsplash.jpg +3 -0
- example_inputs/unsplash/masoud-razeghi--qsrZhXPius-unsplash.jpg +3 -0
- example_inputs/unsplash/rahmat-alizada-7PwFKOgyoKo-unsplash.jpg +3 -0
- flux/__init__.py +11 -0
- flux/image_utils.py +210 -0
- flux/math.py +31 -0
- flux/model.py +165 -0
- flux/modules/__init__.py +0 -0
- flux/modules/autoencoder.py +317 -0
- flux/modules/conditioner.py +37 -0
- flux/modules/layers.py +253 -0
- flux/sampling.py +299 -0
- flux/util.py +249 -0
- fonts/arial.ttf +0 -0
- pulid/attention_processor.py +422 -0
- pulid/encoders.py +64 -0
- pulid/encoders_transformer.py +209 -0
- pulid/pipeline.py +228 -0
- pulid/pipeline_flux.py +194 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets/*
|
2 |
+
experiments/*
|
3 |
+
results/*
|
4 |
+
tb_logger/*
|
5 |
+
wandb/*
|
6 |
+
tmp/*
|
7 |
+
weights/*
|
8 |
+
inputs/*
|
9 |
+
models/*
|
10 |
+
comparisons/*
|
11 |
+
flux_dev_fp8_quantized_model.pth
|
12 |
+
array_outputs/*
|
13 |
+
|
14 |
+
*.DS_Store
|
15 |
+
|
16 |
+
# Byte-compiled / optimized / DLL files
|
17 |
+
__pycache__/
|
18 |
+
*.py[cod]
|
19 |
+
*$py.class
|
20 |
+
|
21 |
+
# C extensions
|
22 |
+
*.so
|
23 |
+
|
24 |
+
# Distribution / packaging
|
25 |
+
.Python
|
26 |
+
build/
|
27 |
+
develop-eggs/
|
28 |
+
dist/
|
29 |
+
downloads/
|
30 |
+
eggs/
|
31 |
+
.eggs/
|
32 |
+
lib/
|
33 |
+
lib64/
|
34 |
+
parts/
|
35 |
+
sdist/
|
36 |
+
var/
|
37 |
+
wheels/
|
38 |
+
pip-wheel-metadata/
|
39 |
+
share/python-wheels/
|
40 |
+
*.egg-info/
|
41 |
+
.installed.cfg
|
42 |
+
*.egg
|
43 |
+
MANIFEST
|
44 |
+
|
45 |
+
# PyInstaller
|
46 |
+
# Usually these files are written by a python script from a template
|
47 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
48 |
+
*.manifest
|
49 |
+
*.spec
|
50 |
+
|
51 |
+
# Installer logs
|
52 |
+
pip-log.txt
|
53 |
+
pip-delete-this-directory.txt
|
54 |
+
|
55 |
+
# Unit test / coverage reports
|
56 |
+
htmlcov/
|
57 |
+
.tox/
|
58 |
+
.nox/
|
59 |
+
.coverage
|
60 |
+
.coverage.*
|
61 |
+
.cache
|
62 |
+
nosetests.xml
|
63 |
+
coverage.xml
|
64 |
+
*.cover
|
65 |
+
*.py,cover
|
66 |
+
.hypothesis/
|
67 |
+
.pytest_cache/
|
68 |
+
|
69 |
+
# Translations
|
70 |
+
*.mo
|
71 |
+
*.pot
|
72 |
+
|
73 |
+
# Django stuff:
|
74 |
+
*.log
|
75 |
+
local_settings.py
|
76 |
+
db.sqlite3
|
77 |
+
db.sqlite3-journal
|
78 |
+
|
79 |
+
# Flask stuff:
|
80 |
+
instance/
|
81 |
+
.webassets-cache
|
82 |
+
|
83 |
+
# Scrapy stuff:
|
84 |
+
.scrapy
|
85 |
+
|
86 |
+
# Sphinx documentation
|
87 |
+
docs/_build/
|
88 |
+
|
89 |
+
# PyBuilder
|
90 |
+
target/
|
91 |
+
|
92 |
+
# Jupyter Notebook
|
93 |
+
.ipynb_checkpoints
|
94 |
+
|
95 |
+
# IPython
|
96 |
+
profile_default/
|
97 |
+
ipython_config.py
|
98 |
+
|
99 |
+
# pyenv
|
100 |
+
.python-version
|
101 |
+
|
102 |
+
# pipenv
|
103 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
104 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
105 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
106 |
+
# install all needed dependencies.
|
107 |
+
#Pipfile.lock
|
108 |
+
|
109 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
110 |
+
__pypackages__/
|
111 |
+
|
112 |
+
# Celery stuff
|
113 |
+
celerybeat-schedule
|
114 |
+
celerybeat.pid
|
115 |
+
|
116 |
+
# SageMath parsed files
|
117 |
+
*.sage.py
|
118 |
+
|
119 |
+
# Environments
|
120 |
+
.env
|
121 |
+
.venv
|
122 |
+
env/
|
123 |
+
venv/
|
124 |
+
ENV/
|
125 |
+
env.bak/
|
126 |
+
venv.bak/
|
127 |
+
|
128 |
+
# Spyder project settings
|
129 |
+
.spyderproject
|
130 |
+
.spyproject
|
131 |
+
|
132 |
+
# Rope project settings
|
133 |
+
.ropeproject
|
134 |
+
|
135 |
+
# mkdocs documentation
|
136 |
+
/site
|
137 |
+
|
138 |
+
# mypy
|
139 |
+
.mypy_cache/
|
140 |
+
.dmypy.json
|
141 |
+
dmypy.json
|
142 |
+
|
143 |
+
# Pyre type checker
|
144 |
+
.pyre/
|
145 |
+
|
146 |
+
.idea/
|
app.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from flux.sampling import denoise, get_noise, get_schedule, prepare, rf_denoise, rf_inversion, unpack
|
11 |
+
from flux.util import (
|
12 |
+
SamplingOptions,
|
13 |
+
load_ae,
|
14 |
+
load_clip,
|
15 |
+
load_flow_model,
|
16 |
+
load_flow_model_quintized,
|
17 |
+
load_t5,
|
18 |
+
)
|
19 |
+
from pulid.pipeline_flux import PuLIDPipeline
|
20 |
+
from pulid.utils import resize_numpy_image_long, seed_everything
|
21 |
+
|
22 |
+
|
23 |
+
def get_models(name: str, device: torch.device, offload: bool, fp8: bool):
|
24 |
+
t5 = load_t5(device, max_length=128)
|
25 |
+
clip = load_clip(device)
|
26 |
+
if fp8:
|
27 |
+
model = load_flow_model_quintized(name, device="cpu" if offload else device)
|
28 |
+
else:
|
29 |
+
model = load_flow_model(name, device="cpu" if offload else device)
|
30 |
+
model.eval()
|
31 |
+
ae = load_ae(name, device="cpu" if offload else device)
|
32 |
+
return model, ae, t5, clip
|
33 |
+
|
34 |
+
|
35 |
+
class FluxGenerator:
|
36 |
+
def __init__(self, model_name: str, device: str, offload: bool, aggressive_offload: bool, args):
|
37 |
+
self.device = torch.device(device)
|
38 |
+
self.offload = offload
|
39 |
+
self.aggressive_offload = aggressive_offload
|
40 |
+
self.model_name = model_name
|
41 |
+
self.model, self.ae, self.t5, self.clip_model = get_models(
|
42 |
+
model_name,
|
43 |
+
device=self.device,
|
44 |
+
offload=self.offload,
|
45 |
+
fp8=args.fp8,
|
46 |
+
)
|
47 |
+
self.pulid_model = PuLIDPipeline(self.model, device="cpu" if offload else device, weight_dtype=torch.bfloat16,
|
48 |
+
onnx_provider=args.onnx_provider)
|
49 |
+
if offload:
|
50 |
+
self.pulid_model.face_helper.face_det.mean_tensor = self.pulid_model.face_helper.face_det.mean_tensor.to(torch.device("cuda"))
|
51 |
+
self.pulid_model.face_helper.face_det.device = torch.device("cuda")
|
52 |
+
self.pulid_model.face_helper.device = torch.device("cuda")
|
53 |
+
self.pulid_model.device = torch.device("cuda")
|
54 |
+
self.pulid_model.load_pretrain(args.pretrained_model, version=args.version)
|
55 |
+
|
56 |
+
# function to encode an image into latents
|
57 |
+
def encode_image_to_latents(self, img, opts):
|
58 |
+
"""
|
59 |
+
Opposite of decode: Takes a PIL image and encodes it into latents (x).
|
60 |
+
"""
|
61 |
+
t0 = time.perf_counter()
|
62 |
+
|
63 |
+
# Resize if necessary, or use opts.height / opts.width if you want a fixed size:
|
64 |
+
img = img.resize((opts.width, opts.height), resample=Image.LANCZOS)
|
65 |
+
|
66 |
+
# Convert image to torch.Tensor and scale to [-1, 1]
|
67 |
+
# Image is in [0, 255] → scale to [0,1] → then map to [-1,1].
|
68 |
+
x = np.array(img).astype(np.float32)
|
69 |
+
x = torch.from_numpy(x) # shape: (H, W, C)
|
70 |
+
x = (x / 127.5) - 1.0 # now in [-1, 1]
|
71 |
+
x = rearrange(x, "h w c -> 1 c h w") # shape: (1, C, H, W)
|
72 |
+
|
73 |
+
# Move encoder to device if you are offloading
|
74 |
+
if self.offload:
|
75 |
+
self.ae.encoder.to(self.device)
|
76 |
+
|
77 |
+
x = x.to(self.device, dtype=torch.bfloat16)
|
78 |
+
|
79 |
+
# 2) Encode with autocast
|
80 |
+
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
|
81 |
+
x = self.ae.encode(x)
|
82 |
+
|
83 |
+
x = x.to(torch.bfloat16)
|
84 |
+
|
85 |
+
|
86 |
+
# 3) Offload if needed
|
87 |
+
if self.offload:
|
88 |
+
self.ae.encoder.cpu()
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
|
91 |
+
t1 = time.perf_counter()
|
92 |
+
print(f"Encoded in {t1 - t0:.2f} seconds.")
|
93 |
+
|
94 |
+
return x
|
95 |
+
|
96 |
+
@spaces.GPU
|
97 |
+
@torch.inference_mode()
|
98 |
+
def generate_image(
|
99 |
+
self,
|
100 |
+
prompt: str,
|
101 |
+
id_image = None,
|
102 |
+
width: int = 512,
|
103 |
+
height: int = 512,
|
104 |
+
num_steps: int = 20,
|
105 |
+
start_step: int = 0,
|
106 |
+
guidance: float = 4.0,
|
107 |
+
seed: int = -1,
|
108 |
+
id_weight: float = 1.0,
|
109 |
+
neg_prompt: str = "",
|
110 |
+
true_cfg: float = 1.0,
|
111 |
+
timestep_to_start_cfg: int = 1,
|
112 |
+
max_sequence_length: int = 128,
|
113 |
+
gamma: float = 0.5,
|
114 |
+
eta: float = 0.7,
|
115 |
+
s: float = 0,
|
116 |
+
tau: float = 5,
|
117 |
+
perform_inversion: bool = True,
|
118 |
+
perform_reconstruction: bool = False,
|
119 |
+
perform_editing: bool = True,
|
120 |
+
inversion_true_cfg: float = 1.0,
|
121 |
+
):
|
122 |
+
"""
|
123 |
+
Core function that performs the image generation.
|
124 |
+
"""
|
125 |
+
self.t5.max_length = max_sequence_length
|
126 |
+
|
127 |
+
# If seed == -1, random
|
128 |
+
seed = int(seed)
|
129 |
+
if seed == -1:
|
130 |
+
seed = None
|
131 |
+
|
132 |
+
opts = SamplingOptions(
|
133 |
+
prompt=prompt,
|
134 |
+
width=width,
|
135 |
+
height=height,
|
136 |
+
num_steps=num_steps,
|
137 |
+
guidance=guidance,
|
138 |
+
seed=seed,
|
139 |
+
)
|
140 |
+
|
141 |
+
if opts.seed is None:
|
142 |
+
opts.seed = torch.Generator(device="cpu").seed()
|
143 |
+
|
144 |
+
seed_everything(opts.seed)
|
145 |
+
|
146 |
+
print(f"Generating prompt: '{opts.prompt}' (seed={opts.seed})...")
|
147 |
+
t0 = time.perf_counter()
|
148 |
+
|
149 |
+
use_true_cfg = abs(true_cfg - 1.0) > 1e-6
|
150 |
+
|
151 |
+
|
152 |
+
# 1) Prepare input noise
|
153 |
+
noise = get_noise(
|
154 |
+
num_samples=1,
|
155 |
+
height=opts.height,
|
156 |
+
width=opts.width,
|
157 |
+
device=self.device,
|
158 |
+
dtype=torch.bfloat16,
|
159 |
+
seed=opts.seed,
|
160 |
+
)
|
161 |
+
bs, c, h, w = noise.shape
|
162 |
+
noise = rearrange(noise, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
163 |
+
if noise.shape[0] == 1 and bs > 1:
|
164 |
+
noise = repeat(noise, "1 ... -> bs ...", bs=bs)
|
165 |
+
# encode
|
166 |
+
x = self.encode_image_to_latents(id_image, opts)
|
167 |
+
|
168 |
+
timesteps = get_schedule(opts.num_steps, x.shape[-1] * x.shape[-2] // 4, shift=False)
|
169 |
+
|
170 |
+
# 2) Prepare text embeddings
|
171 |
+
if self.offload:
|
172 |
+
self.t5 = self.t5.to(self.device)
|
173 |
+
self.clip_model = self.clip_model.to(self.device)
|
174 |
+
|
175 |
+
inp = prepare(t5=self.t5, clip=self.clip_model, img=x, prompt=opts.prompt)
|
176 |
+
inp_inversion = prepare(t5=self.t5, clip=self.clip_model, img=x, prompt="")
|
177 |
+
inp_neg = None
|
178 |
+
if use_true_cfg:
|
179 |
+
inp_neg = prepare(t5=self.t5, clip=self.clip_model, img=x, prompt=neg_prompt)
|
180 |
+
|
181 |
+
# Offload text encoders, load ID detection to GPU
|
182 |
+
if self.offload:
|
183 |
+
self.t5 = self.t5.cpu()
|
184 |
+
self.clip_model = self.clip_model.cpu()
|
185 |
+
torch.cuda.empty_cache()
|
186 |
+
self.pulid_model.components_to_device(torch.device("cuda"))
|
187 |
+
|
188 |
+
# 3) ID Embeddings (optional)
|
189 |
+
id_embeddings = None
|
190 |
+
uncond_id_embeddings = None
|
191 |
+
if id_image is not None:
|
192 |
+
id_image = np.array(id_image)
|
193 |
+
id_image = resize_numpy_image_long(id_image, 1024)
|
194 |
+
id_embeddings, uncond_id_embeddings = self.pulid_model.get_id_embedding(id_image, cal_uncond=use_true_cfg)
|
195 |
+
else:
|
196 |
+
id_embeddings = None
|
197 |
+
uncond_id_embeddings = None
|
198 |
+
|
199 |
+
# Offload ID pipeline, load main FLUX model to GPU
|
200 |
+
if self.offload:
|
201 |
+
self.pulid_model.components_to_device(torch.device("cpu"))
|
202 |
+
torch.cuda.empty_cache()
|
203 |
+
|
204 |
+
if self.aggressive_offload:
|
205 |
+
self.model.components_to_gpu()
|
206 |
+
else:
|
207 |
+
self.model = self.model.to(self.device)
|
208 |
+
|
209 |
+
y_0 = inp["img"].clone().detach()
|
210 |
+
|
211 |
+
inverted = None
|
212 |
+
if perform_inversion:
|
213 |
+
inverted = rf_inversion(
|
214 |
+
self.model,
|
215 |
+
**inp_inversion,
|
216 |
+
timesteps=timesteps,
|
217 |
+
guidance=opts.guidance,
|
218 |
+
id=id_embeddings,
|
219 |
+
id_weight=id_weight,
|
220 |
+
start_step=start_step,
|
221 |
+
uncond_id=uncond_id_embeddings,
|
222 |
+
true_cfg=inversion_true_cfg,
|
223 |
+
timestep_to_start_cfg=timestep_to_start_cfg,
|
224 |
+
neg_txt=inp_neg["txt"] if use_true_cfg else None,
|
225 |
+
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
|
226 |
+
neg_vec=inp_neg["vec"] if use_true_cfg else None,
|
227 |
+
aggressive_offload=self.aggressive_offload,
|
228 |
+
y_1=noise,
|
229 |
+
gamma=gamma
|
230 |
+
)
|
231 |
+
|
232 |
+
img = inverted
|
233 |
+
else:
|
234 |
+
img = noise
|
235 |
+
inp["img"] = img
|
236 |
+
inp_inversion["img"] = img
|
237 |
+
|
238 |
+
recon = None
|
239 |
+
if perform_reconstruction:
|
240 |
+
recon = rf_denoise(
|
241 |
+
self.model,
|
242 |
+
**inp_inversion,
|
243 |
+
timesteps=timesteps,
|
244 |
+
guidance=opts.guidance,
|
245 |
+
id=id_embeddings,
|
246 |
+
id_weight=id_weight,
|
247 |
+
start_step=start_step,
|
248 |
+
uncond_id=uncond_id_embeddings,
|
249 |
+
true_cfg=inversion_true_cfg,
|
250 |
+
timestep_to_start_cfg=timestep_to_start_cfg,
|
251 |
+
neg_txt=inp_neg["txt"] if use_true_cfg else None,
|
252 |
+
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
|
253 |
+
neg_vec=inp_neg["vec"] if use_true_cfg else None,
|
254 |
+
aggressive_offload=self.aggressive_offload,
|
255 |
+
y_0=y_0,
|
256 |
+
eta=eta,
|
257 |
+
s=s,
|
258 |
+
tau=tau,
|
259 |
+
)
|
260 |
+
|
261 |
+
edited = None
|
262 |
+
if perform_editing:
|
263 |
+
edited = rf_denoise(
|
264 |
+
self.model,
|
265 |
+
**inp,
|
266 |
+
timesteps=timesteps,
|
267 |
+
guidance=opts.guidance,
|
268 |
+
id=id_embeddings,
|
269 |
+
id_weight=id_weight,
|
270 |
+
start_step=start_step,
|
271 |
+
uncond_id=uncond_id_embeddings,
|
272 |
+
true_cfg=true_cfg,
|
273 |
+
timestep_to_start_cfg=timestep_to_start_cfg,
|
274 |
+
neg_txt=inp_neg["txt"] if use_true_cfg else None,
|
275 |
+
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
|
276 |
+
neg_vec=inp_neg["vec"] if use_true_cfg else None,
|
277 |
+
aggressive_offload=self.aggressive_offload,
|
278 |
+
y_0=y_0,
|
279 |
+
eta=eta,
|
280 |
+
s=s,
|
281 |
+
tau=tau,
|
282 |
+
)
|
283 |
+
|
284 |
+
# Offload flux model, load auto-decoder
|
285 |
+
if self.offload:
|
286 |
+
self.model.cpu()
|
287 |
+
torch.cuda.empty_cache()
|
288 |
+
self.ae.decoder.to(x.device)
|
289 |
+
|
290 |
+
# 5) Decode latents
|
291 |
+
if edited is not None:
|
292 |
+
edited = unpack(edited.float(), opts.height, opts.width)
|
293 |
+
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
|
294 |
+
edited = self.ae.decode(edited)
|
295 |
+
|
296 |
+
if inverted is not None:
|
297 |
+
inverted = unpack(inverted.float(), opts.height, opts.width)
|
298 |
+
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
|
299 |
+
inverted = self.ae.decode(inverted)
|
300 |
+
|
301 |
+
if recon is not None:
|
302 |
+
recon = unpack(recon.float(), opts.height, opts.width)
|
303 |
+
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
|
304 |
+
recon = self.ae.decode(recon)
|
305 |
+
|
306 |
+
if self.offload:
|
307 |
+
self.ae.decoder.cpu()
|
308 |
+
torch.cuda.empty_cache()
|
309 |
+
|
310 |
+
t1 = time.perf_counter()
|
311 |
+
print(f"Done in {t1 - t0:.2f} seconds.")
|
312 |
+
|
313 |
+
# Convert to PIL
|
314 |
+
if edited is not None:
|
315 |
+
edited = edited.clamp(-1, 1)
|
316 |
+
edited = rearrange(edited[0], "c h w -> h w c")
|
317 |
+
edited = Image.fromarray((127.5 * (edited + 1.0)).cpu().byte().numpy())
|
318 |
+
|
319 |
+
if inverted is not None:
|
320 |
+
inverted = inverted.clamp(-1, 1)
|
321 |
+
inverted = rearrange(inverted[0], "c h w -> h w c")
|
322 |
+
inverted = Image.fromarray((127.5 * (inverted + 1.0)).cpu().byte().numpy())
|
323 |
+
|
324 |
+
if recon is not None:
|
325 |
+
recon = recon.clamp(-1, 1)
|
326 |
+
recon = rearrange(recon[0], "c h w -> h w c")
|
327 |
+
recon = Image.fromarray((127.5 * (recon + 1.0)).cpu().byte().numpy())
|
328 |
+
|
329 |
+
return edited, str(opts.seed), self.pulid_model.debug_img_list
|
330 |
+
|
331 |
+
# <p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2404.16022' target='_blank'>PuLID: Pure and Lightning ID Customization via Contrastive Alignment</a> | Codes: <a href='https://github.com/ToTheBeginning/PuLID' target='_blank'>GitHub</a></p>
|
332 |
+
_HEADER_ = '''
|
333 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
334 |
+
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Tight Inversion for Portrait Editing with FLUX</h1>
|
335 |
+
</div>
|
336 |
+
|
337 |
+
❗️❗️❗️**Tips:**
|
338 |
+
Provide a portrait image and an edit prompt. You can try the examples below or upload your own image.
|
339 |
+
Adjust the id weight to control the faithfulness of the generated image to the input image.
|
340 |
+
''' # noqa E501
|
341 |
+
_CITE_ = r"""
|
342 |
+
""" # noqa E501
|
343 |
+
|
344 |
+
|
345 |
+
def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
346 |
+
offload: bool = False, aggressive_offload: bool = False):
|
347 |
+
generator = FluxGenerator(model_name, device, offload, aggressive_offload, args)
|
348 |
+
|
349 |
+
with gr.Blocks() as demo:
|
350 |
+
gr.Markdown(_HEADER_)
|
351 |
+
|
352 |
+
with gr.Row():
|
353 |
+
with gr.Column():
|
354 |
+
prompt = gr.Textbox(label="Prompt", value="portrait, color, cinematic")
|
355 |
+
id_image = gr.Image(label="ID Image", type="pil")
|
356 |
+
id_weight = gr.Slider(0.0, 1.0, 0.4, step=0.05, label="id weight")
|
357 |
+
|
358 |
+
width = gr.Slider(256, 1536, 1024, step=16, label="Width", visible=args.dev)
|
359 |
+
height = gr.Slider(256, 1536, 1024, step=16, label="Height", visible=args.dev)
|
360 |
+
num_steps = gr.Slider(1, 28, 16, step=1, label="Number of steps")
|
361 |
+
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance")
|
362 |
+
|
363 |
+
with gr.Accordion("Advanced Options (True CFG, true_cfg_scale=1 means use fake CFG, >1 means use true CFG", open=False): # noqa E501
|
364 |
+
neg_prompt = gr.Textbox(
|
365 |
+
label="Negative Prompt",
|
366 |
+
value="")
|
367 |
+
true_cfg = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="true CFG scale")
|
368 |
+
timestep_to_start_cfg = gr.Slider(0, 20, 1, step=1, label="timestep to start cfg", visible=args.dev)
|
369 |
+
start_step = gr.Slider(0, 10, 0, step=1, label="timestep to start inserting ID")
|
370 |
+
seed = gr.Textbox(-1, label="Seed (-1 for random)")
|
371 |
+
max_sequence_length = gr.Slider(128, 512, 128, step=128,
|
372 |
+
label="max_sequence_length for prompt (T5), small will be faster")
|
373 |
+
gr.Markdown("### RF Inversion Options")
|
374 |
+
gamma = gr.Slider(0.0, 1.0, 0.5, step=0.1, label="gamma")
|
375 |
+
eta = gr.Slider(0.0, 1.0, 0.7, step=0.1, label="eta")
|
376 |
+
s = gr.Slider(0.0, 1.0, 0.0, step=0.1, label="s")
|
377 |
+
tau = gr.Slider(0, 20, 2, step=1, label="tau")
|
378 |
+
|
379 |
+
generate_btn = gr.Button("Generate")
|
380 |
+
|
381 |
+
with gr.Column():
|
382 |
+
output_image = gr.Image(label="Generated Image")
|
383 |
+
seed_output = gr.Textbox(label="Used Seed")
|
384 |
+
intermediate_output = gr.Gallery(label='Output', elem_id="gallery", visible=args.dev)
|
385 |
+
gr.Markdown(_CITE_)
|
386 |
+
|
387 |
+
with gr.Row(), gr.Column():
|
388 |
+
gr.Markdown("## Examples")
|
389 |
+
example_inps = [
|
390 |
+
# [
|
391 |
+
# 'a portrait of a vampire',
|
392 |
+
# 'example_inputs/unsplash/krisna-putra-pratama-lKF-MdtuIss-unsplash.jpg',
|
393 |
+
# 0.4, 3.5, 42, 3.5
|
394 |
+
# ],
|
395 |
+
[
|
396 |
+
'a portrait of a zombie',
|
397 |
+
'example_inputs/unsplash/baruk-granda-cfLL_jHQ-Iw-unsplash.jpg',
|
398 |
+
0.4, 3.5, 42, 5.0
|
399 |
+
],
|
400 |
+
[
|
401 |
+
'a portrait of an elf',
|
402 |
+
'example_inputs/unsplash/rahmat-alizada-7PwFKOgyoKo-unsplash.jpg',
|
403 |
+
0.5, 3.5, 42, 5.0
|
404 |
+
],
|
405 |
+
[
|
406 |
+
'a portrait of a clown',
|
407 |
+
'example_inputs/unsplash/lhon-karwan-11tbHtK5STE-unsplash.jpg',
|
408 |
+
0.5, 3.5, 42, 3.5
|
409 |
+
],
|
410 |
+
[
|
411 |
+
'a portrait of an elf',
|
412 |
+
'example_inputs/unsplash/masoud-razeghi--qsrZhXPius-unsplash.jpg',
|
413 |
+
0.5, 3.5, 42, 5.0
|
414 |
+
],
|
415 |
+
# [
|
416 |
+
# 'a portrait of a pirate',
|
417 |
+
# 'example_inputs/unsplash/mina-rad-AEVUFpDGxZM-unsplash.jpg',
|
418 |
+
# 0.3, 3.5, 42, 3.5
|
419 |
+
# ],
|
420 |
+
[
|
421 |
+
'a portrait of a superhero',
|
422 |
+
'example_inputs/unsplash/gus-tu-njana-Mf4MN7MZqcE-unsplash.jpg',
|
423 |
+
0.2, 3.5, 42, 5.0
|
424 |
+
],
|
425 |
+
]
|
426 |
+
gr.Examples(examples=example_inps, inputs=[prompt, id_image, id_weight, guidance, seed, true_cfg])
|
427 |
+
|
428 |
+
generate_btn.click(
|
429 |
+
fn=generator.generate_image,
|
430 |
+
inputs=[prompt, id_image, width, height, num_steps, start_step, guidance, seed, id_weight, neg_prompt,
|
431 |
+
true_cfg, timestep_to_start_cfg, max_sequence_length, gamma, eta, s, tau],
|
432 |
+
outputs=[output_image, seed_output, intermediate_output],
|
433 |
+
)
|
434 |
+
|
435 |
+
return demo
|
436 |
+
|
437 |
+
|
438 |
+
if __name__ == "__main__":
|
439 |
+
import argparse
|
440 |
+
|
441 |
+
parser = argparse.ArgumentParser(description="PuLID for FLUX.1-dev")
|
442 |
+
parser.add_argument('--version', type=str, default='v0.9.1', help='version of the model', choices=['v0.9.0', 'v0.9.1'])
|
443 |
+
parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'),
|
444 |
+
help="currently only support flux-dev")
|
445 |
+
parser.add_argument("--device", type=str, default="cuda", help="Device to use")
|
446 |
+
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
|
447 |
+
parser.add_argument("--aggressive_offload", action="store_true", help="Offload model more aggressively to CPU when not in use, for 24G GPUs")
|
448 |
+
parser.add_argument("--fp8", action="store_true", help="use flux-dev-fp8 model")
|
449 |
+
parser.add_argument("--onnx_provider", type=str, default="gpu", choices=["gpu", "cpu"],
|
450 |
+
help="set onnx_provider to cpu (default gpu) can help reduce RAM usage, and when combined with"
|
451 |
+
"fp8 option, the peak RAM is under 15GB")
|
452 |
+
parser.add_argument("--port", type=int, default=8080, help="Port to use")
|
453 |
+
parser.add_argument("--dev", action='store_true', help="Development mode")
|
454 |
+
parser.add_argument("--pretrained_model", type=str, help='for development')
|
455 |
+
args = parser.parse_args()
|
456 |
+
|
457 |
+
if args.aggressive_offload:
|
458 |
+
args.offload = True
|
459 |
+
|
460 |
+
demo = create_demo(args, args.name, args.device, args.offload, args.aggressive_offload)
|
461 |
+
demo.launch(server_name='0.0.0.0', server_port=args.port, ssr_mode=False)
|
eva_clip/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
2 |
+
from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_transforms
|
3 |
+
from .factory import list_models, add_model_config, get_model_config, load_checkpoint
|
4 |
+
from .loss import ClipLoss
|
5 |
+
from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\
|
6 |
+
convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype
|
7 |
+
from .openai import load_openai_model, list_openai_models
|
8 |
+
from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\
|
9 |
+
get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
|
10 |
+
from .tokenizer import SimpleTokenizer, tokenize
|
11 |
+
from .transform import image_transform
|
eva_clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
eva_clip/constants.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
2 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
eva_clip/eva_vit_model.py
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
|
3 |
+
# --------------------------------------------------------
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
from functools import partial
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
try:
|
11 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
12 |
+
except:
|
13 |
+
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
14 |
+
|
15 |
+
from .transformer import PatchDropout
|
16 |
+
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
+
|
18 |
+
if os.getenv('ENV_TYPE') == 'deepspeed':
|
19 |
+
try:
|
20 |
+
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
21 |
+
except:
|
22 |
+
from torch.utils.checkpoint import checkpoint
|
23 |
+
else:
|
24 |
+
from torch.utils.checkpoint import checkpoint
|
25 |
+
|
26 |
+
try:
|
27 |
+
import xformers
|
28 |
+
import xformers.ops as xops
|
29 |
+
XFORMERS_IS_AVAILBLE = True
|
30 |
+
except:
|
31 |
+
XFORMERS_IS_AVAILBLE = False
|
32 |
+
|
33 |
+
class DropPath(nn.Module):
|
34 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
35 |
+
"""
|
36 |
+
def __init__(self, drop_prob=None):
|
37 |
+
super(DropPath, self).__init__()
|
38 |
+
self.drop_prob = drop_prob
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
return drop_path(x, self.drop_prob, self.training)
|
42 |
+
|
43 |
+
def extra_repr(self) -> str:
|
44 |
+
return 'p={}'.format(self.drop_prob)
|
45 |
+
|
46 |
+
|
47 |
+
class Mlp(nn.Module):
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
in_features,
|
51 |
+
hidden_features=None,
|
52 |
+
out_features=None,
|
53 |
+
act_layer=nn.GELU,
|
54 |
+
norm_layer=nn.LayerNorm,
|
55 |
+
drop=0.,
|
56 |
+
subln=False,
|
57 |
+
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
out_features = out_features or in_features
|
61 |
+
hidden_features = hidden_features or in_features
|
62 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
63 |
+
self.act = act_layer()
|
64 |
+
|
65 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
66 |
+
|
67 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
68 |
+
self.drop = nn.Dropout(drop)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
x = self.fc1(x)
|
72 |
+
x = self.act(x)
|
73 |
+
# x = self.drop(x)
|
74 |
+
# commit this for the orignal BERT implement
|
75 |
+
x = self.ffn_ln(x)
|
76 |
+
|
77 |
+
x = self.fc2(x)
|
78 |
+
x = self.drop(x)
|
79 |
+
return x
|
80 |
+
|
81 |
+
class SwiGLU(nn.Module):
|
82 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
83 |
+
norm_layer=nn.LayerNorm, subln=False):
|
84 |
+
super().__init__()
|
85 |
+
out_features = out_features or in_features
|
86 |
+
hidden_features = hidden_features or in_features
|
87 |
+
|
88 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
89 |
+
self.w2 = nn.Linear(in_features, hidden_features)
|
90 |
+
|
91 |
+
self.act = act_layer()
|
92 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
93 |
+
self.w3 = nn.Linear(hidden_features, out_features)
|
94 |
+
|
95 |
+
self.drop = nn.Dropout(drop)
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
x1 = self.w1(x)
|
99 |
+
x2 = self.w2(x)
|
100 |
+
hidden = self.act(x1) * x2
|
101 |
+
x = self.ffn_ln(hidden)
|
102 |
+
x = self.w3(x)
|
103 |
+
x = self.drop(x)
|
104 |
+
return x
|
105 |
+
|
106 |
+
class Attention(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
109 |
+
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
|
110 |
+
super().__init__()
|
111 |
+
self.num_heads = num_heads
|
112 |
+
head_dim = dim // num_heads
|
113 |
+
if attn_head_dim is not None:
|
114 |
+
head_dim = attn_head_dim
|
115 |
+
all_head_dim = head_dim * self.num_heads
|
116 |
+
self.scale = qk_scale or head_dim ** -0.5
|
117 |
+
|
118 |
+
self.subln = subln
|
119 |
+
if self.subln:
|
120 |
+
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
121 |
+
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
122 |
+
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
123 |
+
else:
|
124 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
125 |
+
|
126 |
+
if qkv_bias:
|
127 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
128 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
129 |
+
else:
|
130 |
+
self.q_bias = None
|
131 |
+
self.v_bias = None
|
132 |
+
|
133 |
+
if window_size:
|
134 |
+
self.window_size = window_size
|
135 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
136 |
+
self.relative_position_bias_table = nn.Parameter(
|
137 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
138 |
+
# cls to token & token 2 cls & cls to cls
|
139 |
+
|
140 |
+
# get pair-wise relative position index for each token inside the window
|
141 |
+
coords_h = torch.arange(window_size[0])
|
142 |
+
coords_w = torch.arange(window_size[1])
|
143 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
144 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
145 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
146 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
147 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
148 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
149 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
150 |
+
relative_position_index = \
|
151 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
152 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
153 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
154 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
155 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
156 |
+
|
157 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
158 |
+
else:
|
159 |
+
self.window_size = None
|
160 |
+
self.relative_position_bias_table = None
|
161 |
+
self.relative_position_index = None
|
162 |
+
|
163 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
164 |
+
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
165 |
+
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
166 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
167 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
168 |
+
self.xattn = xattn
|
169 |
+
self.xattn_drop = attn_drop
|
170 |
+
|
171 |
+
self.rope = rope
|
172 |
+
|
173 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
174 |
+
B, N, C = x.shape
|
175 |
+
if self.subln:
|
176 |
+
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
177 |
+
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
|
178 |
+
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
179 |
+
|
180 |
+
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
|
181 |
+
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
182 |
+
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
183 |
+
else:
|
184 |
+
|
185 |
+
qkv_bias = None
|
186 |
+
if self.q_bias is not None:
|
187 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
188 |
+
|
189 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
190 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
|
191 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
192 |
+
|
193 |
+
if self.rope:
|
194 |
+
# slightly fast impl
|
195 |
+
q_t = q[:, :, 1:, :]
|
196 |
+
ro_q_t = self.rope(q_t)
|
197 |
+
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
198 |
+
|
199 |
+
k_t = k[:, :, 1:, :]
|
200 |
+
ro_k_t = self.rope(k_t)
|
201 |
+
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
202 |
+
|
203 |
+
if self.xattn:
|
204 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
205 |
+
k = k.permute(0, 2, 1, 3)
|
206 |
+
v = v.permute(0, 2, 1, 3)
|
207 |
+
|
208 |
+
x = xops.memory_efficient_attention(
|
209 |
+
q, k, v,
|
210 |
+
p=self.xattn_drop,
|
211 |
+
scale=self.scale,
|
212 |
+
)
|
213 |
+
x = x.reshape(B, N, -1)
|
214 |
+
x = self.inner_attn_ln(x)
|
215 |
+
x = self.proj(x)
|
216 |
+
x = self.proj_drop(x)
|
217 |
+
else:
|
218 |
+
q = q * self.scale
|
219 |
+
attn = (q @ k.transpose(-2, -1))
|
220 |
+
|
221 |
+
if self.relative_position_bias_table is not None:
|
222 |
+
relative_position_bias = \
|
223 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
224 |
+
self.window_size[0] * self.window_size[1] + 1,
|
225 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
226 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
227 |
+
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
228 |
+
|
229 |
+
if rel_pos_bias is not None:
|
230 |
+
attn = attn + rel_pos_bias.type_as(attn)
|
231 |
+
|
232 |
+
if attn_mask is not None:
|
233 |
+
attn_mask = attn_mask.bool()
|
234 |
+
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
|
235 |
+
|
236 |
+
attn = attn.softmax(dim=-1)
|
237 |
+
attn = self.attn_drop(attn)
|
238 |
+
|
239 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
240 |
+
x = self.inner_attn_ln(x)
|
241 |
+
x = self.proj(x)
|
242 |
+
x = self.proj_drop(x)
|
243 |
+
return x
|
244 |
+
|
245 |
+
|
246 |
+
class Block(nn.Module):
|
247 |
+
|
248 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
249 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
250 |
+
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
|
251 |
+
subln=False, naiveswiglu=False):
|
252 |
+
super().__init__()
|
253 |
+
self.norm1 = norm_layer(dim)
|
254 |
+
self.attn = Attention(
|
255 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
256 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
|
257 |
+
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
|
258 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
259 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
260 |
+
self.norm2 = norm_layer(dim)
|
261 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
262 |
+
|
263 |
+
if naiveswiglu:
|
264 |
+
self.mlp = SwiGLU(
|
265 |
+
in_features=dim,
|
266 |
+
hidden_features=mlp_hidden_dim,
|
267 |
+
subln=subln,
|
268 |
+
norm_layer=norm_layer,
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
self.mlp = Mlp(
|
272 |
+
in_features=dim,
|
273 |
+
hidden_features=mlp_hidden_dim,
|
274 |
+
act_layer=act_layer,
|
275 |
+
subln=subln,
|
276 |
+
drop=drop
|
277 |
+
)
|
278 |
+
|
279 |
+
if init_values is not None and init_values > 0:
|
280 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
281 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
282 |
+
else:
|
283 |
+
self.gamma_1, self.gamma_2 = None, None
|
284 |
+
|
285 |
+
self.postnorm = postnorm
|
286 |
+
|
287 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
288 |
+
if self.gamma_1 is None:
|
289 |
+
if self.postnorm:
|
290 |
+
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
291 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
292 |
+
else:
|
293 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
294 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
295 |
+
else:
|
296 |
+
if self.postnorm:
|
297 |
+
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
298 |
+
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
299 |
+
else:
|
300 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
301 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
302 |
+
return x
|
303 |
+
|
304 |
+
|
305 |
+
class PatchEmbed(nn.Module):
|
306 |
+
""" Image to Patch Embedding
|
307 |
+
"""
|
308 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
309 |
+
super().__init__()
|
310 |
+
img_size = to_2tuple(img_size)
|
311 |
+
patch_size = to_2tuple(patch_size)
|
312 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
313 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
314 |
+
self.img_size = img_size
|
315 |
+
self.patch_size = patch_size
|
316 |
+
self.num_patches = num_patches
|
317 |
+
|
318 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
319 |
+
|
320 |
+
def forward(self, x, **kwargs):
|
321 |
+
B, C, H, W = x.shape
|
322 |
+
# FIXME look at relaxing size constraints
|
323 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
324 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
325 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
326 |
+
return x
|
327 |
+
|
328 |
+
|
329 |
+
class RelativePositionBias(nn.Module):
|
330 |
+
|
331 |
+
def __init__(self, window_size, num_heads):
|
332 |
+
super().__init__()
|
333 |
+
self.window_size = window_size
|
334 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
335 |
+
self.relative_position_bias_table = nn.Parameter(
|
336 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
337 |
+
# cls to token & token 2 cls & cls to cls
|
338 |
+
|
339 |
+
# get pair-wise relative position index for each token inside the window
|
340 |
+
coords_h = torch.arange(window_size[0])
|
341 |
+
coords_w = torch.arange(window_size[1])
|
342 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
343 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
344 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
345 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
346 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
347 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
348 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
349 |
+
relative_position_index = \
|
350 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
351 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
352 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
353 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
354 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
355 |
+
|
356 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
357 |
+
|
358 |
+
def forward(self):
|
359 |
+
relative_position_bias = \
|
360 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
361 |
+
self.window_size[0] * self.window_size[1] + 1,
|
362 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
363 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
364 |
+
|
365 |
+
|
366 |
+
class EVAVisionTransformer(nn.Module):
|
367 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
368 |
+
"""
|
369 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
370 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
371 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
|
372 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
|
373 |
+
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
|
374 |
+
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
|
375 |
+
super().__init__()
|
376 |
+
|
377 |
+
if not XFORMERS_IS_AVAILBLE:
|
378 |
+
xattn = False
|
379 |
+
|
380 |
+
self.image_size = img_size
|
381 |
+
self.num_classes = num_classes
|
382 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
383 |
+
|
384 |
+
self.patch_embed = PatchEmbed(
|
385 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
386 |
+
num_patches = self.patch_embed.num_patches
|
387 |
+
|
388 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
389 |
+
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
390 |
+
if use_abs_pos_emb:
|
391 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
392 |
+
else:
|
393 |
+
self.pos_embed = None
|
394 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
395 |
+
|
396 |
+
if use_shared_rel_pos_bias:
|
397 |
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
398 |
+
else:
|
399 |
+
self.rel_pos_bias = None
|
400 |
+
|
401 |
+
if rope:
|
402 |
+
half_head_dim = embed_dim // num_heads // 2
|
403 |
+
hw_seq_len = img_size // patch_size
|
404 |
+
self.rope = VisionRotaryEmbeddingFast(
|
405 |
+
dim=half_head_dim,
|
406 |
+
pt_seq_len=pt_hw_seq_len,
|
407 |
+
ft_seq_len=hw_seq_len if intp_freq else None,
|
408 |
+
# patch_dropout=patch_dropout
|
409 |
+
)
|
410 |
+
else:
|
411 |
+
self.rope = None
|
412 |
+
|
413 |
+
self.naiveswiglu = naiveswiglu
|
414 |
+
|
415 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
416 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
417 |
+
self.blocks = nn.ModuleList([
|
418 |
+
Block(
|
419 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
420 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
421 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
422 |
+
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
|
423 |
+
for i in range(depth)])
|
424 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
425 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
426 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
427 |
+
|
428 |
+
if self.pos_embed is not None:
|
429 |
+
trunc_normal_(self.pos_embed, std=.02)
|
430 |
+
|
431 |
+
trunc_normal_(self.cls_token, std=.02)
|
432 |
+
# trunc_normal_(self.mask_token, std=.02)
|
433 |
+
|
434 |
+
self.apply(self._init_weights)
|
435 |
+
self.fix_init_weight()
|
436 |
+
|
437 |
+
if isinstance(self.head, nn.Linear):
|
438 |
+
trunc_normal_(self.head.weight, std=.02)
|
439 |
+
self.head.weight.data.mul_(init_scale)
|
440 |
+
self.head.bias.data.mul_(init_scale)
|
441 |
+
|
442 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
443 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
444 |
+
|
445 |
+
self.grad_checkpointing = grad_checkpointing
|
446 |
+
|
447 |
+
def fix_init_weight(self):
|
448 |
+
def rescale(param, layer_id):
|
449 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
450 |
+
|
451 |
+
for layer_id, layer in enumerate(self.blocks):
|
452 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
453 |
+
if self.naiveswiglu:
|
454 |
+
rescale(layer.mlp.w3.weight.data, layer_id + 1)
|
455 |
+
else:
|
456 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
457 |
+
|
458 |
+
def get_cast_dtype(self) -> torch.dtype:
|
459 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
460 |
+
|
461 |
+
def _init_weights(self, m):
|
462 |
+
if isinstance(m, nn.Linear):
|
463 |
+
trunc_normal_(m.weight, std=.02)
|
464 |
+
if m.bias is not None:
|
465 |
+
nn.init.constant_(m.bias, 0)
|
466 |
+
elif isinstance(m, nn.LayerNorm):
|
467 |
+
nn.init.constant_(m.bias, 0)
|
468 |
+
nn.init.constant_(m.weight, 1.0)
|
469 |
+
|
470 |
+
def get_num_layers(self):
|
471 |
+
return len(self.blocks)
|
472 |
+
|
473 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
474 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
475 |
+
for param in self.parameters():
|
476 |
+
param.requires_grad = False
|
477 |
+
|
478 |
+
@torch.jit.ignore
|
479 |
+
def set_grad_checkpointing(self, enable=True):
|
480 |
+
self.grad_checkpointing = enable
|
481 |
+
|
482 |
+
@torch.jit.ignore
|
483 |
+
def no_weight_decay(self):
|
484 |
+
return {'pos_embed', 'cls_token'}
|
485 |
+
|
486 |
+
def get_classifier(self):
|
487 |
+
return self.head
|
488 |
+
|
489 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
490 |
+
self.num_classes = num_classes
|
491 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
492 |
+
|
493 |
+
def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
494 |
+
|
495 |
+
x = self.patch_embed(x)
|
496 |
+
batch_size, seq_len, _ = x.size()
|
497 |
+
|
498 |
+
if shuffle:
|
499 |
+
idx = torch.randperm(x.shape[1]) + 1
|
500 |
+
zero = torch.LongTensor([0, ])
|
501 |
+
idx = torch.cat([zero, idx])
|
502 |
+
pos_embed = self.pos_embed[:, idx]
|
503 |
+
|
504 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
505 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
506 |
+
if shuffle:
|
507 |
+
x = x + pos_embed
|
508 |
+
elif self.pos_embed is not None:
|
509 |
+
x = x + self.pos_embed
|
510 |
+
x = self.pos_drop(x)
|
511 |
+
|
512 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
513 |
+
if os.getenv('RoPE') == '1':
|
514 |
+
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
515 |
+
x, patch_indices_keep = self.patch_dropout(x)
|
516 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
|
517 |
+
else:
|
518 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
519 |
+
x = self.patch_dropout(x)
|
520 |
+
else:
|
521 |
+
x = self.patch_dropout(x)
|
522 |
+
|
523 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
524 |
+
hidden_states = []
|
525 |
+
for idx, blk in enumerate(self.blocks):
|
526 |
+
if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden:
|
527 |
+
hidden_states.append(x)
|
528 |
+
if self.grad_checkpointing:
|
529 |
+
x = checkpoint(blk, x, (rel_pos_bias,))
|
530 |
+
else:
|
531 |
+
x = blk(x, rel_pos_bias=rel_pos_bias)
|
532 |
+
|
533 |
+
if not return_all_features:
|
534 |
+
x = self.norm(x)
|
535 |
+
if self.fc_norm is not None:
|
536 |
+
return self.fc_norm(x.mean(1)), hidden_states
|
537 |
+
else:
|
538 |
+
return x[:, 0], hidden_states
|
539 |
+
return x
|
540 |
+
|
541 |
+
def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
542 |
+
if return_all_features:
|
543 |
+
return self.forward_features(x, return_all_features, return_hidden, shuffle)
|
544 |
+
x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle)
|
545 |
+
x = self.head(x)
|
546 |
+
if return_hidden:
|
547 |
+
return x, hidden_states
|
548 |
+
return x
|
eva_clip/factory.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import re
|
6 |
+
from copy import deepcopy
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Optional, Tuple, Union, Dict, Any
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
12 |
+
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
13 |
+
get_cast_dtype
|
14 |
+
from .openai import load_openai_model
|
15 |
+
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model
|
16 |
+
from .transform import image_transform
|
17 |
+
from .tokenizer import HFTokenizer, tokenize
|
18 |
+
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed
|
19 |
+
|
20 |
+
|
21 |
+
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
22 |
+
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
23 |
+
|
24 |
+
|
25 |
+
def _natural_key(string_):
|
26 |
+
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
27 |
+
|
28 |
+
|
29 |
+
def _rescan_model_configs():
|
30 |
+
global _MODEL_CONFIGS
|
31 |
+
|
32 |
+
config_ext = ('.json',)
|
33 |
+
config_files = []
|
34 |
+
for config_path in _MODEL_CONFIG_PATHS:
|
35 |
+
if config_path.is_file() and config_path.suffix in config_ext:
|
36 |
+
config_files.append(config_path)
|
37 |
+
elif config_path.is_dir():
|
38 |
+
for ext in config_ext:
|
39 |
+
config_files.extend(config_path.glob(f'*{ext}'))
|
40 |
+
|
41 |
+
for cf in config_files:
|
42 |
+
with open(cf, "r", encoding="utf8") as f:
|
43 |
+
model_cfg = json.load(f)
|
44 |
+
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
45 |
+
_MODEL_CONFIGS[cf.stem] = model_cfg
|
46 |
+
|
47 |
+
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])))
|
48 |
+
|
49 |
+
|
50 |
+
_rescan_model_configs() # initial populate of model config registry
|
51 |
+
|
52 |
+
|
53 |
+
def list_models():
|
54 |
+
""" enumerate available model architectures based on config files """
|
55 |
+
return list(_MODEL_CONFIGS.keys())
|
56 |
+
|
57 |
+
|
58 |
+
def add_model_config(path):
|
59 |
+
""" add model config path or file and update registry """
|
60 |
+
if not isinstance(path, Path):
|
61 |
+
path = Path(path)
|
62 |
+
_MODEL_CONFIG_PATHS.append(path)
|
63 |
+
_rescan_model_configs()
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_config(model_name):
|
67 |
+
if model_name in _MODEL_CONFIGS:
|
68 |
+
return deepcopy(_MODEL_CONFIGS[model_name])
|
69 |
+
else:
|
70 |
+
return None
|
71 |
+
|
72 |
+
|
73 |
+
def get_tokenizer(model_name):
|
74 |
+
config = get_model_config(model_name)
|
75 |
+
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
|
76 |
+
return tokenizer
|
77 |
+
|
78 |
+
|
79 |
+
# loading openai CLIP weights when is_openai=True for training
|
80 |
+
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]):
|
81 |
+
if is_openai:
|
82 |
+
model = torch.jit.load(checkpoint_path, map_location="cpu").eval()
|
83 |
+
state_dict = model.state_dict()
|
84 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
85 |
+
state_dict.pop(key, None)
|
86 |
+
else:
|
87 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
88 |
+
for mk in model_key.split('|'):
|
89 |
+
if isinstance(checkpoint, dict) and mk in checkpoint:
|
90 |
+
state_dict = checkpoint[mk]
|
91 |
+
break
|
92 |
+
else:
|
93 |
+
state_dict = checkpoint
|
94 |
+
if next(iter(state_dict.items()))[0].startswith('module'):
|
95 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
96 |
+
|
97 |
+
for k in skip_list:
|
98 |
+
if k in list(state_dict.keys()):
|
99 |
+
logging.info(f"Removing key {k} from pretrained checkpoint")
|
100 |
+
del state_dict[k]
|
101 |
+
|
102 |
+
if os.getenv('RoPE') == '1':
|
103 |
+
for k in list(state_dict.keys()):
|
104 |
+
if 'freqs_cos' in k or 'freqs_sin' in k:
|
105 |
+
del state_dict[k]
|
106 |
+
return state_dict
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
|
111 |
+
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False)
|
112 |
+
# detect old format and make compatible with new format
|
113 |
+
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
114 |
+
state_dict = convert_to_custom_text_state_dict(state_dict)
|
115 |
+
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'):
|
116 |
+
state_dict['logit_scale'] = state_dict['text.logit_scale']
|
117 |
+
del state_dict['text.logit_scale']
|
118 |
+
|
119 |
+
# resize_clip_pos_embed for CLIP and open CLIP
|
120 |
+
if 'visual.positional_embedding' in state_dict:
|
121 |
+
resize_clip_pos_embed(state_dict, model)
|
122 |
+
# specified to eva_vit_model
|
123 |
+
elif 'visual.pos_embed' in state_dict:
|
124 |
+
resize_evaclip_pos_embed(state_dict, model)
|
125 |
+
|
126 |
+
# resize_clip_pos_embed(state_dict, model)
|
127 |
+
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
128 |
+
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}")
|
129 |
+
return incompatible_keys
|
130 |
+
|
131 |
+
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
132 |
+
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
133 |
+
|
134 |
+
for k in list(state_dict.keys()):
|
135 |
+
if not k.startswith('visual.'):
|
136 |
+
del state_dict[k]
|
137 |
+
for k in list(state_dict.keys()):
|
138 |
+
if k.startswith('visual.'):
|
139 |
+
new_k = k[7:]
|
140 |
+
state_dict[new_k] = state_dict[k]
|
141 |
+
del state_dict[k]
|
142 |
+
return state_dict
|
143 |
+
|
144 |
+
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]):
|
145 |
+
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list)
|
146 |
+
|
147 |
+
for k in list(state_dict.keys()):
|
148 |
+
if k.startswith('visual.'):
|
149 |
+
del state_dict[k]
|
150 |
+
return state_dict
|
151 |
+
|
152 |
+
def get_pretrained_tag(pretrained_model):
|
153 |
+
pretrained_model = pretrained_model.lower()
|
154 |
+
if "laion" in pretrained_model or "open_clip" in pretrained_model:
|
155 |
+
return "open_clip"
|
156 |
+
elif "openai" in pretrained_model:
|
157 |
+
return "clip"
|
158 |
+
elif "eva" in pretrained_model and "clip" in pretrained_model:
|
159 |
+
return "eva_clip"
|
160 |
+
else:
|
161 |
+
return "other"
|
162 |
+
|
163 |
+
def load_pretrained_checkpoint(
|
164 |
+
model,
|
165 |
+
visual_checkpoint_path,
|
166 |
+
text_checkpoint_path,
|
167 |
+
strict=True,
|
168 |
+
visual_model=None,
|
169 |
+
text_model=None,
|
170 |
+
model_key="model|module|state_dict",
|
171 |
+
skip_list=[]):
|
172 |
+
visual_tag = get_pretrained_tag(visual_model)
|
173 |
+
text_tag = get_pretrained_tag(text_model)
|
174 |
+
|
175 |
+
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}")
|
176 |
+
visual_incompatible_keys, text_incompatible_keys = None, None
|
177 |
+
if visual_checkpoint_path:
|
178 |
+
if visual_tag == "eva_clip" or visual_tag == "open_clip":
|
179 |
+
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list)
|
180 |
+
elif visual_tag == "clip":
|
181 |
+
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list)
|
182 |
+
else:
|
183 |
+
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
184 |
+
|
185 |
+
# resize_clip_pos_embed for CLIP and open CLIP
|
186 |
+
if 'positional_embedding' in visual_state_dict:
|
187 |
+
resize_visual_pos_embed(visual_state_dict, model)
|
188 |
+
# specified to EVA model
|
189 |
+
elif 'pos_embed' in visual_state_dict:
|
190 |
+
resize_eva_pos_embed(visual_state_dict, model)
|
191 |
+
|
192 |
+
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict)
|
193 |
+
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}")
|
194 |
+
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}")
|
195 |
+
|
196 |
+
if text_checkpoint_path:
|
197 |
+
if text_tag == "eva_clip" or text_tag == "open_clip":
|
198 |
+
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list)
|
199 |
+
elif text_tag == "clip":
|
200 |
+
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list)
|
201 |
+
else:
|
202 |
+
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list)
|
203 |
+
|
204 |
+
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict)
|
205 |
+
|
206 |
+
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}")
|
207 |
+
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}")
|
208 |
+
|
209 |
+
return visual_incompatible_keys, text_incompatible_keys
|
210 |
+
|
211 |
+
def create_model(
|
212 |
+
model_name: str,
|
213 |
+
pretrained: Optional[str] = None,
|
214 |
+
precision: str = 'fp32',
|
215 |
+
device: Union[str, torch.device] = 'cpu',
|
216 |
+
jit: bool = False,
|
217 |
+
force_quick_gelu: bool = False,
|
218 |
+
force_custom_clip: bool = False,
|
219 |
+
force_patch_dropout: Optional[float] = None,
|
220 |
+
pretrained_image: str = '',
|
221 |
+
pretrained_text: str = '',
|
222 |
+
pretrained_hf: bool = True,
|
223 |
+
pretrained_visual_model: str = None,
|
224 |
+
pretrained_text_model: str = None,
|
225 |
+
cache_dir: Optional[str] = None,
|
226 |
+
skip_list: list = [],
|
227 |
+
):
|
228 |
+
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
229 |
+
if isinstance(device, str):
|
230 |
+
device = torch.device(device)
|
231 |
+
|
232 |
+
if pretrained and pretrained.lower() == 'openai':
|
233 |
+
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
234 |
+
model = load_openai_model(
|
235 |
+
model_name,
|
236 |
+
precision=precision,
|
237 |
+
device=device,
|
238 |
+
jit=jit,
|
239 |
+
cache_dir=cache_dir,
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
model_cfg = get_model_config(model_name)
|
243 |
+
if model_cfg is not None:
|
244 |
+
logging.info(f'Loaded {model_name} model config.')
|
245 |
+
else:
|
246 |
+
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
247 |
+
raise RuntimeError(f'Model config for {model_name} not found.')
|
248 |
+
|
249 |
+
if 'rope' in model_cfg.get('vision_cfg', {}):
|
250 |
+
if model_cfg['vision_cfg']['rope']:
|
251 |
+
os.environ['RoPE'] = "1"
|
252 |
+
else:
|
253 |
+
os.environ['RoPE'] = "0"
|
254 |
+
|
255 |
+
if force_quick_gelu:
|
256 |
+
# override for use of QuickGELU on non-OpenAI transformer models
|
257 |
+
model_cfg["quick_gelu"] = True
|
258 |
+
|
259 |
+
if force_patch_dropout is not None:
|
260 |
+
# override the default patch dropout value
|
261 |
+
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout
|
262 |
+
|
263 |
+
cast_dtype = get_cast_dtype(precision)
|
264 |
+
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg'])
|
265 |
+
|
266 |
+
|
267 |
+
if custom_clip:
|
268 |
+
if 'hf_model_name' in model_cfg.get('text_cfg', {}):
|
269 |
+
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
|
270 |
+
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype)
|
271 |
+
else:
|
272 |
+
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
273 |
+
|
274 |
+
pretrained_cfg = {}
|
275 |
+
if pretrained:
|
276 |
+
checkpoint_path = ''
|
277 |
+
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
278 |
+
if pretrained_cfg:
|
279 |
+
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
280 |
+
elif os.path.exists(pretrained):
|
281 |
+
checkpoint_path = pretrained
|
282 |
+
|
283 |
+
if checkpoint_path:
|
284 |
+
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
285 |
+
load_checkpoint(model,
|
286 |
+
checkpoint_path,
|
287 |
+
model_key="model|module|state_dict",
|
288 |
+
strict=False
|
289 |
+
)
|
290 |
+
else:
|
291 |
+
error_str = (
|
292 |
+
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
293 |
+
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
294 |
+
logging.warning(error_str)
|
295 |
+
raise RuntimeError(error_str)
|
296 |
+
else:
|
297 |
+
visual_checkpoint_path = ''
|
298 |
+
text_checkpoint_path = ''
|
299 |
+
|
300 |
+
if pretrained_image:
|
301 |
+
pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names
|
302 |
+
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image)
|
303 |
+
if 'timm_model_name' in model_cfg.get('vision_cfg', {}):
|
304 |
+
# pretrained weight loading for timm models set via vision_cfg
|
305 |
+
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
306 |
+
elif pretrained_image_cfg:
|
307 |
+
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir)
|
308 |
+
elif os.path.exists(pretrained_image):
|
309 |
+
visual_checkpoint_path = pretrained_image
|
310 |
+
else:
|
311 |
+
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
312 |
+
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.')
|
313 |
+
|
314 |
+
if pretrained_text:
|
315 |
+
pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names
|
316 |
+
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text)
|
317 |
+
if pretrained_image_cfg:
|
318 |
+
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir)
|
319 |
+
elif os.path.exists(pretrained_text):
|
320 |
+
text_checkpoint_path = pretrained_text
|
321 |
+
else:
|
322 |
+
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
323 |
+
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.')
|
324 |
+
|
325 |
+
if visual_checkpoint_path:
|
326 |
+
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).')
|
327 |
+
if text_checkpoint_path:
|
328 |
+
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).')
|
329 |
+
|
330 |
+
if visual_checkpoint_path or text_checkpoint_path:
|
331 |
+
load_pretrained_checkpoint(
|
332 |
+
model,
|
333 |
+
visual_checkpoint_path,
|
334 |
+
text_checkpoint_path,
|
335 |
+
strict=False,
|
336 |
+
visual_model=pretrained_visual_model,
|
337 |
+
text_model=pretrained_text_model,
|
338 |
+
model_key="model|module|state_dict",
|
339 |
+
skip_list=skip_list
|
340 |
+
)
|
341 |
+
|
342 |
+
if "fp16" in precision or "bf16" in precision:
|
343 |
+
logging.info(f'convert precision to {precision}')
|
344 |
+
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16)
|
345 |
+
|
346 |
+
model.to(device=device)
|
347 |
+
|
348 |
+
# set image / mean metadata from pretrained_cfg if available, or use default
|
349 |
+
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
|
350 |
+
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD
|
351 |
+
|
352 |
+
if jit:
|
353 |
+
model = torch.jit.script(model)
|
354 |
+
|
355 |
+
return model
|
356 |
+
|
357 |
+
|
358 |
+
def create_model_and_transforms(
|
359 |
+
model_name: str,
|
360 |
+
pretrained: Optional[str] = None,
|
361 |
+
precision: str = 'fp32',
|
362 |
+
device: Union[str, torch.device] = 'cpu',
|
363 |
+
jit: bool = False,
|
364 |
+
force_quick_gelu: bool = False,
|
365 |
+
force_custom_clip: bool = False,
|
366 |
+
force_patch_dropout: Optional[float] = None,
|
367 |
+
pretrained_image: str = '',
|
368 |
+
pretrained_text: str = '',
|
369 |
+
pretrained_hf: bool = True,
|
370 |
+
pretrained_visual_model: str = None,
|
371 |
+
pretrained_text_model: str = None,
|
372 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
373 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
374 |
+
cache_dir: Optional[str] = None,
|
375 |
+
skip_list: list = [],
|
376 |
+
):
|
377 |
+
model = create_model(
|
378 |
+
model_name,
|
379 |
+
pretrained,
|
380 |
+
precision=precision,
|
381 |
+
device=device,
|
382 |
+
jit=jit,
|
383 |
+
force_quick_gelu=force_quick_gelu,
|
384 |
+
force_custom_clip=force_custom_clip,
|
385 |
+
force_patch_dropout=force_patch_dropout,
|
386 |
+
pretrained_image=pretrained_image,
|
387 |
+
pretrained_text=pretrained_text,
|
388 |
+
pretrained_hf=pretrained_hf,
|
389 |
+
pretrained_visual_model=pretrained_visual_model,
|
390 |
+
pretrained_text_model=pretrained_text_model,
|
391 |
+
cache_dir=cache_dir,
|
392 |
+
skip_list=skip_list,
|
393 |
+
)
|
394 |
+
|
395 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
396 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
397 |
+
preprocess_train = image_transform(
|
398 |
+
model.visual.image_size,
|
399 |
+
is_train=True,
|
400 |
+
mean=image_mean,
|
401 |
+
std=image_std
|
402 |
+
)
|
403 |
+
preprocess_val = image_transform(
|
404 |
+
model.visual.image_size,
|
405 |
+
is_train=False,
|
406 |
+
mean=image_mean,
|
407 |
+
std=image_std
|
408 |
+
)
|
409 |
+
|
410 |
+
return model, preprocess_train, preprocess_val
|
411 |
+
|
412 |
+
|
413 |
+
def create_transforms(
|
414 |
+
model_name: str,
|
415 |
+
pretrained: Optional[str] = None,
|
416 |
+
precision: str = 'fp32',
|
417 |
+
device: Union[str, torch.device] = 'cpu',
|
418 |
+
jit: bool = False,
|
419 |
+
force_quick_gelu: bool = False,
|
420 |
+
force_custom_clip: bool = False,
|
421 |
+
force_patch_dropout: Optional[float] = None,
|
422 |
+
pretrained_image: str = '',
|
423 |
+
pretrained_text: str = '',
|
424 |
+
pretrained_hf: bool = True,
|
425 |
+
pretrained_visual_model: str = None,
|
426 |
+
pretrained_text_model: str = None,
|
427 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
428 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
429 |
+
cache_dir: Optional[str] = None,
|
430 |
+
skip_list: list = [],
|
431 |
+
):
|
432 |
+
model = create_model(
|
433 |
+
model_name,
|
434 |
+
pretrained,
|
435 |
+
precision=precision,
|
436 |
+
device=device,
|
437 |
+
jit=jit,
|
438 |
+
force_quick_gelu=force_quick_gelu,
|
439 |
+
force_custom_clip=force_custom_clip,
|
440 |
+
force_patch_dropout=force_patch_dropout,
|
441 |
+
pretrained_image=pretrained_image,
|
442 |
+
pretrained_text=pretrained_text,
|
443 |
+
pretrained_hf=pretrained_hf,
|
444 |
+
pretrained_visual_model=pretrained_visual_model,
|
445 |
+
pretrained_text_model=pretrained_text_model,
|
446 |
+
cache_dir=cache_dir,
|
447 |
+
skip_list=skip_list,
|
448 |
+
)
|
449 |
+
|
450 |
+
|
451 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
452 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
453 |
+
preprocess_train = image_transform(
|
454 |
+
model.visual.image_size,
|
455 |
+
is_train=True,
|
456 |
+
mean=image_mean,
|
457 |
+
std=image_std
|
458 |
+
)
|
459 |
+
preprocess_val = image_transform(
|
460 |
+
model.visual.image_size,
|
461 |
+
is_train=False,
|
462 |
+
mean=image_mean,
|
463 |
+
std=image_std
|
464 |
+
)
|
465 |
+
del model
|
466 |
+
|
467 |
+
return preprocess_train, preprocess_val
|
468 |
+
|
469 |
+
def create_model_from_pretrained(
|
470 |
+
model_name: str,
|
471 |
+
pretrained: str,
|
472 |
+
precision: str = 'fp32',
|
473 |
+
device: Union[str, torch.device] = 'cpu',
|
474 |
+
jit: bool = False,
|
475 |
+
force_quick_gelu: bool = False,
|
476 |
+
force_custom_clip: bool = False,
|
477 |
+
force_patch_dropout: Optional[float] = None,
|
478 |
+
return_transform: bool = True,
|
479 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
480 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
481 |
+
cache_dir: Optional[str] = None,
|
482 |
+
is_frozen: bool = False,
|
483 |
+
):
|
484 |
+
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained):
|
485 |
+
raise RuntimeError(
|
486 |
+
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.'
|
487 |
+
f' Use open_clip.list_pretrained() to find one.')
|
488 |
+
|
489 |
+
model = create_model(
|
490 |
+
model_name,
|
491 |
+
pretrained,
|
492 |
+
precision=precision,
|
493 |
+
device=device,
|
494 |
+
jit=jit,
|
495 |
+
force_quick_gelu=force_quick_gelu,
|
496 |
+
force_custom_clip=force_custom_clip,
|
497 |
+
force_patch_dropout=force_patch_dropout,
|
498 |
+
cache_dir=cache_dir,
|
499 |
+
)
|
500 |
+
|
501 |
+
if is_frozen:
|
502 |
+
for param in model.parameters():
|
503 |
+
param.requires_grad = False
|
504 |
+
|
505 |
+
if not return_transform:
|
506 |
+
return model
|
507 |
+
|
508 |
+
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
|
509 |
+
image_std = image_std or getattr(model.visual, 'image_std', None)
|
510 |
+
preprocess = image_transform(
|
511 |
+
model.visual.image_size,
|
512 |
+
is_train=False,
|
513 |
+
mean=image_mean,
|
514 |
+
std=image_std
|
515 |
+
)
|
516 |
+
|
517 |
+
return model, preprocess
|
eva_clip/hf_configs.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HF architecture dict:
|
2 |
+
arch_dict = {
|
3 |
+
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
4 |
+
"roberta": {
|
5 |
+
"config_names": {
|
6 |
+
"context_length": "max_position_embeddings",
|
7 |
+
"vocab_size": "vocab_size",
|
8 |
+
"width": "hidden_size",
|
9 |
+
"heads": "num_attention_heads",
|
10 |
+
"layers": "num_hidden_layers",
|
11 |
+
"layer_attr": "layer",
|
12 |
+
"token_embeddings_attr": "embeddings"
|
13 |
+
},
|
14 |
+
"pooler": "mean_pooler",
|
15 |
+
},
|
16 |
+
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
17 |
+
"xlm-roberta": {
|
18 |
+
"config_names": {
|
19 |
+
"context_length": "max_position_embeddings",
|
20 |
+
"vocab_size": "vocab_size",
|
21 |
+
"width": "hidden_size",
|
22 |
+
"heads": "num_attention_heads",
|
23 |
+
"layers": "num_hidden_layers",
|
24 |
+
"layer_attr": "layer",
|
25 |
+
"token_embeddings_attr": "embeddings"
|
26 |
+
},
|
27 |
+
"pooler": "mean_pooler",
|
28 |
+
},
|
29 |
+
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
30 |
+
"mt5": {
|
31 |
+
"config_names": {
|
32 |
+
# unlimited seqlen
|
33 |
+
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
34 |
+
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
35 |
+
"context_length": "",
|
36 |
+
"vocab_size": "vocab_size",
|
37 |
+
"width": "d_model",
|
38 |
+
"heads": "num_heads",
|
39 |
+
"layers": "num_layers",
|
40 |
+
"layer_attr": "block",
|
41 |
+
"token_embeddings_attr": "embed_tokens"
|
42 |
+
},
|
43 |
+
"pooler": "mean_pooler",
|
44 |
+
},
|
45 |
+
"bert": {
|
46 |
+
"config_names": {
|
47 |
+
"context_length": "max_position_embeddings",
|
48 |
+
"vocab_size": "vocab_size",
|
49 |
+
"width": "hidden_size",
|
50 |
+
"heads": "num_attention_heads",
|
51 |
+
"layers": "num_hidden_layers",
|
52 |
+
"layer_attr": "layer",
|
53 |
+
"token_embeddings_attr": "embeddings"
|
54 |
+
},
|
55 |
+
"pooler": "mean_pooler",
|
56 |
+
}
|
57 |
+
}
|
eva_clip/hf_model.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" huggingface model adapter
|
2 |
+
|
3 |
+
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import re
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch import TensorType
|
12 |
+
try:
|
13 |
+
import transformers
|
14 |
+
from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig
|
15 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
|
16 |
+
BaseModelOutputWithPoolingAndCrossAttentions
|
17 |
+
except ImportError as e:
|
18 |
+
transformers = None
|
19 |
+
|
20 |
+
|
21 |
+
class BaseModelOutput:
|
22 |
+
pass
|
23 |
+
|
24 |
+
|
25 |
+
class PretrainedConfig:
|
26 |
+
pass
|
27 |
+
|
28 |
+
from .hf_configs import arch_dict
|
29 |
+
|
30 |
+
# utils
|
31 |
+
def _camel2snake(s):
|
32 |
+
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
33 |
+
|
34 |
+
# TODO: ?last - for gpt-like models
|
35 |
+
_POOLERS = {}
|
36 |
+
|
37 |
+
def register_pooler(cls):
|
38 |
+
"""Decorator registering pooler class"""
|
39 |
+
_POOLERS[_camel2snake(cls.__name__)] = cls
|
40 |
+
return cls
|
41 |
+
|
42 |
+
|
43 |
+
@register_pooler
|
44 |
+
class MeanPooler(nn.Module):
|
45 |
+
"""Mean pooling"""
|
46 |
+
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
47 |
+
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
48 |
+
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
49 |
+
|
50 |
+
@register_pooler
|
51 |
+
class MaxPooler(nn.Module):
|
52 |
+
"""Max pooling"""
|
53 |
+
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
54 |
+
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
|
55 |
+
return masked_output.max(1).values
|
56 |
+
|
57 |
+
@register_pooler
|
58 |
+
class ClsPooler(nn.Module):
|
59 |
+
"""CLS token pooling"""
|
60 |
+
def __init__(self, use_pooler_output=True):
|
61 |
+
super().__init__()
|
62 |
+
self.cls_token_position = 0
|
63 |
+
self.use_pooler_output = use_pooler_output
|
64 |
+
|
65 |
+
def forward(self, x:BaseModelOutput, attention_mask:TensorType):
|
66 |
+
|
67 |
+
if (self.use_pooler_output and
|
68 |
+
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
|
69 |
+
(x.pooler_output is not None)
|
70 |
+
):
|
71 |
+
return x.pooler_output
|
72 |
+
|
73 |
+
return x.last_hidden_state[:, self.cls_token_position, :]
|
74 |
+
|
75 |
+
class HFTextEncoder(nn.Module):
|
76 |
+
"""HuggingFace model adapter"""
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
model_name_or_path: str,
|
80 |
+
output_dim: int,
|
81 |
+
tokenizer_name: str = None,
|
82 |
+
config: PretrainedConfig = None,
|
83 |
+
pooler_type: str = None,
|
84 |
+
proj: str = None,
|
85 |
+
pretrained: bool = True,
|
86 |
+
masked_language_modeling: bool = False):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
self.output_dim = output_dim
|
90 |
+
|
91 |
+
# TODO: find better way to get this information
|
92 |
+
uses_transformer_pooler = (pooler_type == "cls_pooler")
|
93 |
+
|
94 |
+
if transformers is None:
|
95 |
+
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
|
96 |
+
if config is None:
|
97 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path)
|
98 |
+
if masked_language_modeling:
|
99 |
+
create_func, model_args = (AutoModelForMaskedLM.from_pretrained, model_name_or_path) if pretrained else (
|
100 |
+
AutoModelForMaskedLM.from_config, self.config)
|
101 |
+
else:
|
102 |
+
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
|
103 |
+
AutoModel.from_config, self.config)
|
104 |
+
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
|
105 |
+
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
|
106 |
+
self.transformer = create_func(model_args)
|
107 |
+
self.transformer = self.transformer.encoder
|
108 |
+
else:
|
109 |
+
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
|
110 |
+
else:
|
111 |
+
self.config = config
|
112 |
+
if masked_language_modeling:
|
113 |
+
self.transformer = AutoModelForMaskedLM.from_config(config)
|
114 |
+
else:
|
115 |
+
self.transformer = AutoModel.from_config(config)
|
116 |
+
|
117 |
+
if pooler_type is None: # get default arch pooler
|
118 |
+
self.pooler = _POOLERS[(arch_dict[self.config.model_type]["pooler"])]()
|
119 |
+
else:
|
120 |
+
self.pooler = _POOLERS[pooler_type]()
|
121 |
+
|
122 |
+
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
|
123 |
+
if (d_model == output_dim) and (proj is None): # do we always need a proj?
|
124 |
+
self.proj = nn.Identity()
|
125 |
+
elif proj == 'linear':
|
126 |
+
self.proj = nn.Linear(d_model, output_dim, bias=False)
|
127 |
+
elif proj == 'mlp':
|
128 |
+
hidden_size = (d_model + output_dim) // 2
|
129 |
+
self.proj = nn.Sequential(
|
130 |
+
nn.Linear(d_model, hidden_size, bias=False),
|
131 |
+
nn.GELU(),
|
132 |
+
nn.Linear(hidden_size, output_dim, bias=False),
|
133 |
+
)
|
134 |
+
|
135 |
+
# self.itm_proj = nn.Linear(d_model, 2, bias=False)
|
136 |
+
# self.mlm_proj = nn.Linear(d_model, self.config.vocab_size), bias=False)
|
137 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
138 |
+
|
139 |
+
# def forward_itm(self, x:TensorType, image_embeds:TensorType) -> TensorType:
|
140 |
+
# image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device)
|
141 |
+
# attn_mask = (x != self.config.pad_token_id).long()
|
142 |
+
# out = self.transformer(
|
143 |
+
# input_ids=x,
|
144 |
+
# attention_mask=attn_mask,
|
145 |
+
# encoder_hidden_states = image_embeds,
|
146 |
+
# encoder_attention_mask = image_atts,
|
147 |
+
# )
|
148 |
+
# pooled_out = self.pooler(out, attn_mask)
|
149 |
+
|
150 |
+
# return self.itm_proj(pooled_out)
|
151 |
+
|
152 |
+
def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None):
|
153 |
+
if masked_indices is None:
|
154 |
+
masked_indices = torch.bernoulli(probability_matrix).bool()
|
155 |
+
|
156 |
+
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
|
157 |
+
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
|
158 |
+
|
159 |
+
if targets is not None:
|
160 |
+
targets[~masked_indices] = -100 # We only compute loss on masked tokens
|
161 |
+
|
162 |
+
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
163 |
+
indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
|
164 |
+
input_ids[indices_replaced] = self.tokenizer.mask_token_id
|
165 |
+
|
166 |
+
# 10% of the time, we replace masked input tokens with random word
|
167 |
+
indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
168 |
+
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
|
169 |
+
input_ids[indices_random] = random_words[indices_random]
|
170 |
+
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
171 |
+
|
172 |
+
if targets is not None:
|
173 |
+
return input_ids, targets
|
174 |
+
else:
|
175 |
+
return input_ids
|
176 |
+
|
177 |
+
def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25):
|
178 |
+
labels = input_ids.clone()
|
179 |
+
attn_mask = (input_ids != self.config.pad_token_id).long()
|
180 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device)
|
181 |
+
vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"])
|
182 |
+
probability_matrix = torch.full(labels.shape, mlm_probability)
|
183 |
+
input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels,
|
184 |
+
probability_matrix = probability_matrix)
|
185 |
+
mlm_output = self.transformer(input_ids,
|
186 |
+
attention_mask = attn_mask,
|
187 |
+
encoder_hidden_states = image_embeds,
|
188 |
+
encoder_attention_mask = image_atts,
|
189 |
+
return_dict = True,
|
190 |
+
labels = labels,
|
191 |
+
)
|
192 |
+
return mlm_output.loss
|
193 |
+
# mlm_output = self.transformer(input_ids,
|
194 |
+
# attention_mask = attn_mask,
|
195 |
+
# encoder_hidden_states = image_embeds,
|
196 |
+
# encoder_attention_mask = image_atts,
|
197 |
+
# return_dict = True,
|
198 |
+
# ).last_hidden_state
|
199 |
+
# logits = self.mlm_proj(mlm_output)
|
200 |
+
|
201 |
+
# # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size)
|
202 |
+
# logits = logits[:, 1:, :].contiguous().view(-1, vocab_size)
|
203 |
+
# labels = labels[:, 1:].contiguous().view(-1)
|
204 |
+
|
205 |
+
# mlm_loss = F.cross_entropy(
|
206 |
+
# logits,
|
207 |
+
# labels,
|
208 |
+
# # label_smoothing=0.1,
|
209 |
+
# )
|
210 |
+
# return mlm_loss
|
211 |
+
|
212 |
+
|
213 |
+
def forward(self, x:TensorType) -> TensorType:
|
214 |
+
attn_mask = (x != self.config.pad_token_id).long()
|
215 |
+
out = self.transformer(input_ids=x, attention_mask=attn_mask)
|
216 |
+
pooled_out = self.pooler(out, attn_mask)
|
217 |
+
|
218 |
+
return self.proj(pooled_out)
|
219 |
+
|
220 |
+
def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
221 |
+
if not unlocked_layers: # full freezing
|
222 |
+
for n, p in self.transformer.named_parameters():
|
223 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
224 |
+
return
|
225 |
+
|
226 |
+
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
227 |
+
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
228 |
+
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
229 |
+
embeddings = getattr(
|
230 |
+
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
231 |
+
modules = [embeddings, *layer_list][:-unlocked_layers]
|
232 |
+
# freeze layers
|
233 |
+
for module in modules:
|
234 |
+
for n, p in module.named_parameters():
|
235 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
236 |
+
|
237 |
+
|
238 |
+
@torch.jit.ignore
|
239 |
+
def set_grad_checkpointing(self, enable=True):
|
240 |
+
self.transformer.gradient_checkpointing_enable()
|
241 |
+
|
242 |
+
def get_num_layers(self):
|
243 |
+
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
244 |
+
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
245 |
+
return len(layer_list)
|
246 |
+
|
247 |
+
def init_parameters(self):
|
248 |
+
pass
|
eva_clip/loss.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
try:
|
7 |
+
import torch.distributed.nn
|
8 |
+
from torch import distributed as dist
|
9 |
+
has_distributed = True
|
10 |
+
except ImportError:
|
11 |
+
has_distributed = False
|
12 |
+
|
13 |
+
try:
|
14 |
+
import horovod.torch as hvd
|
15 |
+
except ImportError:
|
16 |
+
hvd = None
|
17 |
+
|
18 |
+
from timm.loss import LabelSmoothingCrossEntropy
|
19 |
+
|
20 |
+
|
21 |
+
def gather_features(
|
22 |
+
image_features,
|
23 |
+
text_features,
|
24 |
+
local_loss=False,
|
25 |
+
gather_with_grad=False,
|
26 |
+
rank=0,
|
27 |
+
world_size=1,
|
28 |
+
use_horovod=False
|
29 |
+
):
|
30 |
+
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
|
31 |
+
if use_horovod:
|
32 |
+
assert hvd is not None, 'Please install horovod'
|
33 |
+
if gather_with_grad:
|
34 |
+
all_image_features = hvd.allgather(image_features)
|
35 |
+
all_text_features = hvd.allgather(text_features)
|
36 |
+
else:
|
37 |
+
with torch.no_grad():
|
38 |
+
all_image_features = hvd.allgather(image_features)
|
39 |
+
all_text_features = hvd.allgather(text_features)
|
40 |
+
if not local_loss:
|
41 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
42 |
+
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
|
43 |
+
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
|
44 |
+
gathered_image_features[rank] = image_features
|
45 |
+
gathered_text_features[rank] = text_features
|
46 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
47 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
48 |
+
else:
|
49 |
+
# We gather tensors from all gpus
|
50 |
+
if gather_with_grad:
|
51 |
+
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
|
52 |
+
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
|
53 |
+
# all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0)
|
54 |
+
# all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0)
|
55 |
+
else:
|
56 |
+
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
|
57 |
+
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
|
58 |
+
dist.all_gather(gathered_image_features, image_features)
|
59 |
+
dist.all_gather(gathered_text_features, text_features)
|
60 |
+
if not local_loss:
|
61 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
62 |
+
gathered_image_features[rank] = image_features
|
63 |
+
gathered_text_features[rank] = text_features
|
64 |
+
all_image_features = torch.cat(gathered_image_features, dim=0)
|
65 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
66 |
+
|
67 |
+
return all_image_features, all_text_features
|
68 |
+
|
69 |
+
|
70 |
+
class ClipLoss(nn.Module):
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
local_loss=False,
|
75 |
+
gather_with_grad=False,
|
76 |
+
cache_labels=False,
|
77 |
+
rank=0,
|
78 |
+
world_size=1,
|
79 |
+
use_horovod=False,
|
80 |
+
smoothing=0.,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
self.local_loss = local_loss
|
84 |
+
self.gather_with_grad = gather_with_grad
|
85 |
+
self.cache_labels = cache_labels
|
86 |
+
self.rank = rank
|
87 |
+
self.world_size = world_size
|
88 |
+
self.use_horovod = use_horovod
|
89 |
+
self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None
|
90 |
+
|
91 |
+
# cache state
|
92 |
+
self.prev_num_logits = 0
|
93 |
+
self.labels = {}
|
94 |
+
|
95 |
+
def forward(self, image_features, text_features, logit_scale=1.):
|
96 |
+
device = image_features.device
|
97 |
+
if self.world_size > 1:
|
98 |
+
all_image_features, all_text_features = gather_features(
|
99 |
+
image_features, text_features,
|
100 |
+
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
|
101 |
+
|
102 |
+
if self.local_loss:
|
103 |
+
logits_per_image = logit_scale * image_features @ all_text_features.T
|
104 |
+
logits_per_text = logit_scale * text_features @ all_image_features.T
|
105 |
+
else:
|
106 |
+
logits_per_image = logit_scale * all_image_features @ all_text_features.T
|
107 |
+
logits_per_text = logits_per_image.T
|
108 |
+
else:
|
109 |
+
logits_per_image = logit_scale * image_features @ text_features.T
|
110 |
+
logits_per_text = logit_scale * text_features @ image_features.T
|
111 |
+
# calculated ground-truth and cache if enabled
|
112 |
+
num_logits = logits_per_image.shape[0]
|
113 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
114 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
115 |
+
if self.world_size > 1 and self.local_loss:
|
116 |
+
labels = labels + num_logits * self.rank
|
117 |
+
if self.cache_labels:
|
118 |
+
self.labels[device] = labels
|
119 |
+
self.prev_num_logits = num_logits
|
120 |
+
else:
|
121 |
+
labels = self.labels[device]
|
122 |
+
|
123 |
+
if self.label_smoothing_cross_entropy:
|
124 |
+
total_loss = (
|
125 |
+
self.label_smoothing_cross_entropy(logits_per_image, labels) +
|
126 |
+
self.label_smoothing_cross_entropy(logits_per_text, labels)
|
127 |
+
) / 2
|
128 |
+
else:
|
129 |
+
total_loss = (
|
130 |
+
F.cross_entropy(logits_per_image, labels) +
|
131 |
+
F.cross_entropy(logits_per_text, labels)
|
132 |
+
) / 2
|
133 |
+
|
134 |
+
acc = None
|
135 |
+
i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image)
|
136 |
+
t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text)
|
137 |
+
acc = {"i2t": i2t_acc, "t2i": t2i_acc}
|
138 |
+
return total_loss, acc
|
eva_clip/model.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP Model
|
2 |
+
|
3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
try:
|
16 |
+
from .hf_model import HFTextEncoder
|
17 |
+
except:
|
18 |
+
HFTextEncoder = None
|
19 |
+
from .modified_resnet import ModifiedResNet
|
20 |
+
from .timm_model import TimmModel
|
21 |
+
from .eva_vit_model import EVAVisionTransformer
|
22 |
+
from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
|
23 |
+
|
24 |
+
try:
|
25 |
+
from apex.normalization import FusedLayerNorm
|
26 |
+
except:
|
27 |
+
FusedLayerNorm = LayerNorm
|
28 |
+
print("Please 'pip install apex'")
|
29 |
+
|
30 |
+
try:
|
31 |
+
import xformers.ops as xops
|
32 |
+
except ImportError:
|
33 |
+
xops = None
|
34 |
+
print("Please 'pip install xformers'")
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class CLIPVisionCfg:
|
38 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
39 |
+
width: int = 768
|
40 |
+
head_width: int = 64
|
41 |
+
mlp_ratio: float = 4.0
|
42 |
+
patch_size: int = 16
|
43 |
+
image_size: Union[Tuple[int, int], int] = 224
|
44 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
45 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
46 |
+
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
47 |
+
drop_path_rate: Optional[float] = None # drop path rate
|
48 |
+
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
49 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
50 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
51 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
52 |
+
timm_proj_bias: bool = False # enable bias final projection
|
53 |
+
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
|
54 |
+
qkv_bias: bool = True
|
55 |
+
fusedLN: bool = False
|
56 |
+
xattn: bool = False
|
57 |
+
postnorm: bool = False
|
58 |
+
rope: bool = False
|
59 |
+
pt_hw_seq_len: int = 16 # 224/14
|
60 |
+
intp_freq: bool = False
|
61 |
+
naiveswiglu: bool = False
|
62 |
+
subln: bool = False
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class CLIPTextCfg:
|
67 |
+
context_length: int = 77
|
68 |
+
vocab_size: int = 49408
|
69 |
+
width: int = 512
|
70 |
+
heads: int = 8
|
71 |
+
layers: int = 12
|
72 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
73 |
+
hf_model_name: str = None
|
74 |
+
hf_tokenizer_name: str = None
|
75 |
+
hf_model_pretrained: bool = True
|
76 |
+
proj: str = 'mlp'
|
77 |
+
pooler_type: str = 'mean_pooler'
|
78 |
+
masked_language_modeling: bool = False
|
79 |
+
fusedLN: bool = False
|
80 |
+
xattn: bool = False
|
81 |
+
attn_mask: bool = True
|
82 |
+
|
83 |
+
def get_cast_dtype(precision: str):
|
84 |
+
cast_dtype = None
|
85 |
+
if precision == 'bf16':
|
86 |
+
cast_dtype = torch.bfloat16
|
87 |
+
elif precision == 'fp16':
|
88 |
+
cast_dtype = torch.float16
|
89 |
+
return cast_dtype
|
90 |
+
|
91 |
+
|
92 |
+
def _build_vision_tower(
|
93 |
+
embed_dim: int,
|
94 |
+
vision_cfg: CLIPVisionCfg,
|
95 |
+
quick_gelu: bool = False,
|
96 |
+
cast_dtype: Optional[torch.dtype] = None
|
97 |
+
):
|
98 |
+
if isinstance(vision_cfg, dict):
|
99 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
100 |
+
|
101 |
+
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
102 |
+
# memory efficient in recent PyTorch releases (>= 1.10).
|
103 |
+
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
104 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
105 |
+
|
106 |
+
if vision_cfg.eva_model_name:
|
107 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
108 |
+
norm_layer = LayerNorm
|
109 |
+
|
110 |
+
visual = EVAVisionTransformer(
|
111 |
+
img_size=vision_cfg.image_size,
|
112 |
+
patch_size=vision_cfg.patch_size,
|
113 |
+
num_classes=embed_dim,
|
114 |
+
use_mean_pooling=vision_cfg.global_average_pool, #False
|
115 |
+
init_values=vision_cfg.ls_init_value,
|
116 |
+
patch_dropout=vision_cfg.patch_dropout,
|
117 |
+
embed_dim=vision_cfg.width,
|
118 |
+
depth=vision_cfg.layers,
|
119 |
+
num_heads=vision_heads,
|
120 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
121 |
+
qkv_bias=vision_cfg.qkv_bias,
|
122 |
+
drop_path_rate=vision_cfg.drop_path_rate,
|
123 |
+
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
|
124 |
+
xattn=vision_cfg.xattn,
|
125 |
+
rope=vision_cfg.rope,
|
126 |
+
postnorm=vision_cfg.postnorm,
|
127 |
+
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
|
128 |
+
intp_freq= vision_cfg.intp_freq,
|
129 |
+
naiveswiglu= vision_cfg.naiveswiglu,
|
130 |
+
subln= vision_cfg.subln
|
131 |
+
)
|
132 |
+
elif vision_cfg.timm_model_name:
|
133 |
+
visual = TimmModel(
|
134 |
+
vision_cfg.timm_model_name,
|
135 |
+
pretrained=vision_cfg.timm_model_pretrained,
|
136 |
+
pool=vision_cfg.timm_pool,
|
137 |
+
proj=vision_cfg.timm_proj,
|
138 |
+
proj_bias=vision_cfg.timm_proj_bias,
|
139 |
+
embed_dim=embed_dim,
|
140 |
+
image_size=vision_cfg.image_size
|
141 |
+
)
|
142 |
+
act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
|
143 |
+
elif isinstance(vision_cfg.layers, (tuple, list)):
|
144 |
+
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
145 |
+
visual = ModifiedResNet(
|
146 |
+
layers=vision_cfg.layers,
|
147 |
+
output_dim=embed_dim,
|
148 |
+
heads=vision_heads,
|
149 |
+
image_size=vision_cfg.image_size,
|
150 |
+
width=vision_cfg.width
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
154 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
155 |
+
visual = VisionTransformer(
|
156 |
+
image_size=vision_cfg.image_size,
|
157 |
+
patch_size=vision_cfg.patch_size,
|
158 |
+
width=vision_cfg.width,
|
159 |
+
layers=vision_cfg.layers,
|
160 |
+
heads=vision_heads,
|
161 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
162 |
+
ls_init_value=vision_cfg.ls_init_value,
|
163 |
+
patch_dropout=vision_cfg.patch_dropout,
|
164 |
+
global_average_pool=vision_cfg.global_average_pool,
|
165 |
+
output_dim=embed_dim,
|
166 |
+
act_layer=act_layer,
|
167 |
+
norm_layer=norm_layer,
|
168 |
+
)
|
169 |
+
|
170 |
+
return visual
|
171 |
+
|
172 |
+
|
173 |
+
def _build_text_tower(
|
174 |
+
embed_dim: int,
|
175 |
+
text_cfg: CLIPTextCfg,
|
176 |
+
quick_gelu: bool = False,
|
177 |
+
cast_dtype: Optional[torch.dtype] = None,
|
178 |
+
):
|
179 |
+
if isinstance(text_cfg, dict):
|
180 |
+
text_cfg = CLIPTextCfg(**text_cfg)
|
181 |
+
|
182 |
+
if text_cfg.hf_model_name:
|
183 |
+
text = HFTextEncoder(
|
184 |
+
text_cfg.hf_model_name,
|
185 |
+
output_dim=embed_dim,
|
186 |
+
tokenizer_name=text_cfg.hf_tokenizer_name,
|
187 |
+
proj=text_cfg.proj,
|
188 |
+
pooler_type=text_cfg.pooler_type,
|
189 |
+
masked_language_modeling=text_cfg.masked_language_modeling
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
193 |
+
norm_layer = LayerNorm
|
194 |
+
|
195 |
+
text = TextTransformer(
|
196 |
+
context_length=text_cfg.context_length,
|
197 |
+
vocab_size=text_cfg.vocab_size,
|
198 |
+
width=text_cfg.width,
|
199 |
+
heads=text_cfg.heads,
|
200 |
+
layers=text_cfg.layers,
|
201 |
+
ls_init_value=text_cfg.ls_init_value,
|
202 |
+
output_dim=embed_dim,
|
203 |
+
act_layer=act_layer,
|
204 |
+
norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
|
205 |
+
xattn=text_cfg.xattn,
|
206 |
+
attn_mask=text_cfg.attn_mask,
|
207 |
+
)
|
208 |
+
return text
|
209 |
+
|
210 |
+
class CLIP(nn.Module):
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
embed_dim: int,
|
214 |
+
vision_cfg: CLIPVisionCfg,
|
215 |
+
text_cfg: CLIPTextCfg,
|
216 |
+
quick_gelu: bool = False,
|
217 |
+
cast_dtype: Optional[torch.dtype] = None,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
221 |
+
|
222 |
+
text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
223 |
+
self.transformer = text.transformer
|
224 |
+
self.vocab_size = text.vocab_size
|
225 |
+
self.token_embedding = text.token_embedding
|
226 |
+
self.positional_embedding = text.positional_embedding
|
227 |
+
self.ln_final = text.ln_final
|
228 |
+
self.text_projection = text.text_projection
|
229 |
+
self.register_buffer('attn_mask', text.attn_mask, persistent=False)
|
230 |
+
|
231 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
232 |
+
|
233 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
234 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
235 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
236 |
+
|
237 |
+
@torch.jit.ignore
|
238 |
+
def set_grad_checkpointing(self, enable=True):
|
239 |
+
self.visual.set_grad_checkpointing(enable)
|
240 |
+
self.transformer.grad_checkpointing = enable
|
241 |
+
|
242 |
+
@torch.jit.ignore
|
243 |
+
def no_weight_decay(self):
|
244 |
+
return {'logit_scale'}
|
245 |
+
|
246 |
+
def encode_image(self, image, normalize: bool = False):
|
247 |
+
features = self.visual(image)
|
248 |
+
return F.normalize(features, dim=-1) if normalize else features
|
249 |
+
|
250 |
+
def encode_text(self, text, normalize: bool = False):
|
251 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
252 |
+
|
253 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
254 |
+
|
255 |
+
x = x + self.positional_embedding.to(cast_dtype)
|
256 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
257 |
+
x = self.transformer(x, attn_mask=self.attn_mask)
|
258 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
259 |
+
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
260 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
261 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
262 |
+
return F.normalize(x, dim=-1) if normalize else x
|
263 |
+
|
264 |
+
def forward(self, image, text):
|
265 |
+
image_features = self.encode_image(image, normalize=True)
|
266 |
+
text_features = self.encode_text(text, normalize=True)
|
267 |
+
return image_features, text_features, self.logit_scale.exp()
|
268 |
+
|
269 |
+
|
270 |
+
class CustomCLIP(nn.Module):
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
embed_dim: int,
|
274 |
+
vision_cfg: CLIPVisionCfg,
|
275 |
+
text_cfg: CLIPTextCfg,
|
276 |
+
quick_gelu: bool = False,
|
277 |
+
cast_dtype: Optional[torch.dtype] = None,
|
278 |
+
itm_task: bool = False,
|
279 |
+
):
|
280 |
+
super().__init__()
|
281 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
282 |
+
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
283 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
284 |
+
|
285 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
286 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
287 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
288 |
+
|
289 |
+
def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
|
290 |
+
self.text.lock(unlocked_layers, freeze_layer_norm)
|
291 |
+
|
292 |
+
@torch.jit.ignore
|
293 |
+
def set_grad_checkpointing(self, enable=True):
|
294 |
+
self.visual.set_grad_checkpointing(enable)
|
295 |
+
self.text.set_grad_checkpointing(enable)
|
296 |
+
|
297 |
+
@torch.jit.ignore
|
298 |
+
def no_weight_decay(self):
|
299 |
+
return {'logit_scale'}
|
300 |
+
|
301 |
+
def encode_image(self, image, normalize: bool = False):
|
302 |
+
features = self.visual(image)
|
303 |
+
return F.normalize(features, dim=-1) if normalize else features
|
304 |
+
|
305 |
+
def encode_text(self, text, normalize: bool = False):
|
306 |
+
features = self.text(text)
|
307 |
+
return F.normalize(features, dim=-1) if normalize else features
|
308 |
+
|
309 |
+
def forward(self, image, text):
|
310 |
+
image_features = self.encode_image(image, normalize=True)
|
311 |
+
text_features = self.encode_text(text, normalize=True)
|
312 |
+
return image_features, text_features, self.logit_scale.exp()
|
313 |
+
|
314 |
+
|
315 |
+
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
316 |
+
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
317 |
+
|
318 |
+
def _convert_weights(l):
|
319 |
+
|
320 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
321 |
+
l.weight.data = l.weight.data.to(dtype)
|
322 |
+
if l.bias is not None:
|
323 |
+
l.bias.data = l.bias.data.to(dtype)
|
324 |
+
|
325 |
+
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
326 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
327 |
+
tensor = getattr(l, attr, None)
|
328 |
+
if tensor is not None:
|
329 |
+
tensor.data = tensor.data.to(dtype)
|
330 |
+
|
331 |
+
if isinstance(l, nn.Parameter):
|
332 |
+
l.data = l.data.to(dtype)
|
333 |
+
|
334 |
+
for name in ["text_projection", "proj"]:
|
335 |
+
if hasattr(l, name) and isinstance(l, nn.Parameter):
|
336 |
+
attr = getattr(l, name, None)
|
337 |
+
if attr is not None:
|
338 |
+
attr.data = attr.data.to(dtype)
|
339 |
+
|
340 |
+
model.apply(_convert_weights)
|
341 |
+
|
342 |
+
|
343 |
+
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
344 |
+
|
345 |
+
|
346 |
+
# used to maintain checkpoint compatibility
|
347 |
+
def convert_to_custom_text_state_dict(state_dict: dict):
|
348 |
+
if 'text_projection' in state_dict:
|
349 |
+
# old format state_dict, move text tower -> .text
|
350 |
+
new_state_dict = {}
|
351 |
+
for k, v in state_dict.items():
|
352 |
+
if any(k.startswith(p) for p in (
|
353 |
+
'text_projection',
|
354 |
+
'positional_embedding',
|
355 |
+
'token_embedding',
|
356 |
+
'transformer',
|
357 |
+
'ln_final',
|
358 |
+
'logit_scale'
|
359 |
+
)):
|
360 |
+
k = 'text.' + k
|
361 |
+
new_state_dict[k] = v
|
362 |
+
return new_state_dict
|
363 |
+
return state_dict
|
364 |
+
|
365 |
+
|
366 |
+
def build_model_from_openai_state_dict(
|
367 |
+
state_dict: dict,
|
368 |
+
quick_gelu=True,
|
369 |
+
cast_dtype=torch.float16,
|
370 |
+
):
|
371 |
+
vit = "visual.proj" in state_dict
|
372 |
+
|
373 |
+
if vit:
|
374 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
375 |
+
vision_layers = len(
|
376 |
+
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
377 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
378 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
379 |
+
image_size = vision_patch_size * grid_size
|
380 |
+
else:
|
381 |
+
counts: list = [
|
382 |
+
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
383 |
+
vision_layers = tuple(counts)
|
384 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
385 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
386 |
+
vision_patch_size = None
|
387 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
388 |
+
image_size = output_width * 32
|
389 |
+
|
390 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
391 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
392 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
393 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
394 |
+
transformer_heads = transformer_width // 64
|
395 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
396 |
+
|
397 |
+
vision_cfg = CLIPVisionCfg(
|
398 |
+
layers=vision_layers,
|
399 |
+
width=vision_width,
|
400 |
+
patch_size=vision_patch_size,
|
401 |
+
image_size=image_size,
|
402 |
+
)
|
403 |
+
text_cfg = CLIPTextCfg(
|
404 |
+
context_length=context_length,
|
405 |
+
vocab_size=vocab_size,
|
406 |
+
width=transformer_width,
|
407 |
+
heads=transformer_heads,
|
408 |
+
layers=transformer_layers
|
409 |
+
)
|
410 |
+
model = CLIP(
|
411 |
+
embed_dim,
|
412 |
+
vision_cfg=vision_cfg,
|
413 |
+
text_cfg=text_cfg,
|
414 |
+
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
415 |
+
cast_dtype=cast_dtype,
|
416 |
+
)
|
417 |
+
|
418 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
419 |
+
state_dict.pop(key, None)
|
420 |
+
|
421 |
+
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
422 |
+
model.load_state_dict(state_dict)
|
423 |
+
return model.eval()
|
424 |
+
|
425 |
+
|
426 |
+
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
427 |
+
model.eval()
|
428 |
+
image_size = model.visual.image_size
|
429 |
+
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
430 |
+
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
431 |
+
model = torch.jit.trace_module(
|
432 |
+
model,
|
433 |
+
inputs=dict(
|
434 |
+
forward=(example_images, example_text),
|
435 |
+
encode_text=(example_text,),
|
436 |
+
encode_image=(example_images,)
|
437 |
+
))
|
438 |
+
model.visual.image_size = image_size
|
439 |
+
return model
|
eva_clip/model_configs/EVA01-CLIP-B-16.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 512,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 12,
|
6 |
+
"width": 768,
|
7 |
+
"patch_size": 16,
|
8 |
+
"eva_model_name": "eva-clip-b-16",
|
9 |
+
"ls_init_value": 0.1,
|
10 |
+
"drop_path_rate": 0.0
|
11 |
+
},
|
12 |
+
"text_cfg": {
|
13 |
+
"context_length": 77,
|
14 |
+
"vocab_size": 49408,
|
15 |
+
"width": 512,
|
16 |
+
"heads": 8,
|
17 |
+
"layers": 12
|
18 |
+
}
|
19 |
+
}
|
eva_clip/model_configs/EVA01-CLIP-g-14-plus.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 40,
|
6 |
+
"width": 1408,
|
7 |
+
"head_width": 88,
|
8 |
+
"mlp_ratio": 4.3637,
|
9 |
+
"patch_size": 14,
|
10 |
+
"eva_model_name": "eva-clip-g-14-x",
|
11 |
+
"drop_path_rate": 0,
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true
|
14 |
+
},
|
15 |
+
"text_cfg": {
|
16 |
+
"context_length": 77,
|
17 |
+
"vocab_size": 49408,
|
18 |
+
"width": 1024,
|
19 |
+
"heads": 16,
|
20 |
+
"layers": 24,
|
21 |
+
"xattn": false,
|
22 |
+
"fusedLN": true
|
23 |
+
}
|
24 |
+
}
|
eva_clip/model_configs/EVA01-CLIP-g-14.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 40,
|
6 |
+
"width": 1408,
|
7 |
+
"head_width": 88,
|
8 |
+
"mlp_ratio": 4.3637,
|
9 |
+
"patch_size": 14,
|
10 |
+
"eva_model_name": "eva-clip-g-14-x",
|
11 |
+
"drop_path_rate": 0.4,
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true
|
14 |
+
},
|
15 |
+
"text_cfg": {
|
16 |
+
"context_length": 77,
|
17 |
+
"vocab_size": 49408,
|
18 |
+
"width": 768,
|
19 |
+
"heads": 12,
|
20 |
+
"layers": 12,
|
21 |
+
"xattn": false,
|
22 |
+
"fusedLN": true
|
23 |
+
}
|
24 |
+
}
|
eva_clip/model_configs/EVA02-CLIP-B-16.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 512,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 12,
|
6 |
+
"width": 768,
|
7 |
+
"head_width": 64,
|
8 |
+
"patch_size": 16,
|
9 |
+
"mlp_ratio": 2.6667,
|
10 |
+
"eva_model_name": "eva-clip-b-16-X",
|
11 |
+
"drop_path_rate": 0.0,
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true,
|
14 |
+
"rope": true,
|
15 |
+
"pt_hw_seq_len": 16,
|
16 |
+
"intp_freq": true,
|
17 |
+
"naiveswiglu": true,
|
18 |
+
"subln": true
|
19 |
+
},
|
20 |
+
"text_cfg": {
|
21 |
+
"context_length": 77,
|
22 |
+
"vocab_size": 49408,
|
23 |
+
"width": 512,
|
24 |
+
"heads": 8,
|
25 |
+
"layers": 12,
|
26 |
+
"xattn": true,
|
27 |
+
"fusedLN": true
|
28 |
+
}
|
29 |
+
}
|
eva_clip/model_configs/EVA02-CLIP-L-14-336.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 336,
|
5 |
+
"layers": 24,
|
6 |
+
"width": 1024,
|
7 |
+
"drop_path_rate": 0,
|
8 |
+
"head_width": 64,
|
9 |
+
"mlp_ratio": 2.6667,
|
10 |
+
"patch_size": 14,
|
11 |
+
"eva_model_name": "eva-clip-l-14-336",
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true,
|
14 |
+
"rope": true,
|
15 |
+
"pt_hw_seq_len": 16,
|
16 |
+
"intp_freq": true,
|
17 |
+
"naiveswiglu": true,
|
18 |
+
"subln": true
|
19 |
+
},
|
20 |
+
"text_cfg": {
|
21 |
+
"context_length": 77,
|
22 |
+
"vocab_size": 49408,
|
23 |
+
"width": 768,
|
24 |
+
"heads": 12,
|
25 |
+
"layers": 12,
|
26 |
+
"xattn": false,
|
27 |
+
"fusedLN": true
|
28 |
+
}
|
29 |
+
}
|
eva_clip/model_configs/EVA02-CLIP-L-14.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 24,
|
6 |
+
"width": 1024,
|
7 |
+
"drop_path_rate": 0,
|
8 |
+
"head_width": 64,
|
9 |
+
"mlp_ratio": 2.6667,
|
10 |
+
"patch_size": 14,
|
11 |
+
"eva_model_name": "eva-clip-l-14",
|
12 |
+
"xattn": true,
|
13 |
+
"fusedLN": true,
|
14 |
+
"rope": true,
|
15 |
+
"pt_hw_seq_len": 16,
|
16 |
+
"intp_freq": true,
|
17 |
+
"naiveswiglu": true,
|
18 |
+
"subln": true
|
19 |
+
},
|
20 |
+
"text_cfg": {
|
21 |
+
"context_length": 77,
|
22 |
+
"vocab_size": 49408,
|
23 |
+
"width": 768,
|
24 |
+
"heads": 12,
|
25 |
+
"layers": 12,
|
26 |
+
"xattn": false,
|
27 |
+
"fusedLN": true
|
28 |
+
}
|
29 |
+
}
|
eva_clip/model_configs/EVA02-CLIP-bigE-14-plus.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 64,
|
6 |
+
"width": 1792,
|
7 |
+
"head_width": 112,
|
8 |
+
"mlp_ratio": 8.571428571428571,
|
9 |
+
"patch_size": 14,
|
10 |
+
"eva_model_name": "eva-clip-4b-14-x",
|
11 |
+
"drop_path_rate": 0,
|
12 |
+
"xattn": true,
|
13 |
+
"postnorm": true,
|
14 |
+
"fusedLN": true
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 1280,
|
20 |
+
"heads": 20,
|
21 |
+
"layers": 32,
|
22 |
+
"xattn": false,
|
23 |
+
"fusedLN": true
|
24 |
+
}
|
25 |
+
}
|
eva_clip/model_configs/EVA02-CLIP-bigE-14.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 1024,
|
3 |
+
"vision_cfg": {
|
4 |
+
"image_size": 224,
|
5 |
+
"layers": 64,
|
6 |
+
"width": 1792,
|
7 |
+
"head_width": 112,
|
8 |
+
"mlp_ratio": 8.571428571428571,
|
9 |
+
"patch_size": 14,
|
10 |
+
"eva_model_name": "eva-clip-4b-14-x",
|
11 |
+
"drop_path_rate": 0,
|
12 |
+
"xattn": true,
|
13 |
+
"postnorm": true,
|
14 |
+
"fusedLN": true
|
15 |
+
},
|
16 |
+
"text_cfg": {
|
17 |
+
"context_length": 77,
|
18 |
+
"vocab_size": 49408,
|
19 |
+
"width": 1024,
|
20 |
+
"heads": 16,
|
21 |
+
"layers": 24,
|
22 |
+
"xattn": false,
|
23 |
+
"fusedLN": true
|
24 |
+
}
|
25 |
+
}
|
eva_clip/modified_resnet.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from eva_clip.utils import freeze_batch_norm_2d
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.act1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.act2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.act3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.act1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.act2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.act3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x, key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0.,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
|
92 |
+
return x[0]
|
93 |
+
|
94 |
+
|
95 |
+
class ModifiedResNet(nn.Module):
|
96 |
+
"""
|
97 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
98 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
99 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
100 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
104 |
+
super().__init__()
|
105 |
+
self.output_dim = output_dim
|
106 |
+
self.image_size = image_size
|
107 |
+
|
108 |
+
# the 3-layer stem
|
109 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
110 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
111 |
+
self.act1 = nn.ReLU(inplace=True)
|
112 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
113 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
114 |
+
self.act2 = nn.ReLU(inplace=True)
|
115 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
116 |
+
self.bn3 = nn.BatchNorm2d(width)
|
117 |
+
self.act3 = nn.ReLU(inplace=True)
|
118 |
+
self.avgpool = nn.AvgPool2d(2)
|
119 |
+
|
120 |
+
# residual layers
|
121 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
122 |
+
self.layer1 = self._make_layer(width, layers[0])
|
123 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
124 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
125 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
126 |
+
|
127 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
128 |
+
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
129 |
+
|
130 |
+
self.init_parameters()
|
131 |
+
|
132 |
+
def _make_layer(self, planes, blocks, stride=1):
|
133 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
134 |
+
|
135 |
+
self._inplanes = planes * Bottleneck.expansion
|
136 |
+
for _ in range(1, blocks):
|
137 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
138 |
+
|
139 |
+
return nn.Sequential(*layers)
|
140 |
+
|
141 |
+
def init_parameters(self):
|
142 |
+
if self.attnpool is not None:
|
143 |
+
std = self.attnpool.c_proj.in_features ** -0.5
|
144 |
+
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
145 |
+
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
146 |
+
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
147 |
+
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
148 |
+
|
149 |
+
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
150 |
+
for name, param in resnet_block.named_parameters():
|
151 |
+
if name.endswith("bn3.weight"):
|
152 |
+
nn.init.zeros_(param)
|
153 |
+
|
154 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
155 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
156 |
+
for param in self.parameters():
|
157 |
+
param.requires_grad = False
|
158 |
+
if freeze_bn_stats:
|
159 |
+
freeze_batch_norm_2d(self)
|
160 |
+
|
161 |
+
@torch.jit.ignore
|
162 |
+
def set_grad_checkpointing(self, enable=True):
|
163 |
+
# FIXME support for non-transformer
|
164 |
+
pass
|
165 |
+
|
166 |
+
def stem(self, x):
|
167 |
+
x = self.act1(self.bn1(self.conv1(x)))
|
168 |
+
x = self.act2(self.bn2(self.conv2(x)))
|
169 |
+
x = self.act3(self.bn3(self.conv3(x)))
|
170 |
+
x = self.avgpool(x)
|
171 |
+
return x
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
x = self.stem(x)
|
175 |
+
x = self.layer1(x)
|
176 |
+
x = self.layer2(x)
|
177 |
+
x = self.layer3(x)
|
178 |
+
x = self.layer4(x)
|
179 |
+
x = self.attnpool(x)
|
180 |
+
|
181 |
+
return x
|
eva_clip/openai.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" OpenAI pretrained model functions
|
2 |
+
|
3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
|
13 |
+
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
|
14 |
+
|
15 |
+
__all__ = ["list_openai_models", "load_openai_model"]
|
16 |
+
|
17 |
+
|
18 |
+
def list_openai_models() -> List[str]:
|
19 |
+
"""Returns the names of available CLIP models"""
|
20 |
+
return list_pretrained_models_by_tag('openai')
|
21 |
+
|
22 |
+
|
23 |
+
def load_openai_model(
|
24 |
+
name: str,
|
25 |
+
precision: Optional[str] = None,
|
26 |
+
device: Optional[Union[str, torch.device]] = None,
|
27 |
+
jit: bool = True,
|
28 |
+
cache_dir: Optional[str] = None,
|
29 |
+
):
|
30 |
+
"""Load a CLIP model
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
----------
|
34 |
+
name : str
|
35 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
36 |
+
precision: str
|
37 |
+
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
|
38 |
+
device : Union[str, torch.device]
|
39 |
+
The device to put the loaded model
|
40 |
+
jit : bool
|
41 |
+
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
42 |
+
cache_dir : Optional[str]
|
43 |
+
The directory to cache the downloaded model weights
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
model : torch.nn.Module
|
48 |
+
The CLIP model
|
49 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
50 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
51 |
+
"""
|
52 |
+
if device is None:
|
53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
if precision is None:
|
55 |
+
precision = 'fp32' if device == 'cpu' else 'fp16'
|
56 |
+
|
57 |
+
if get_pretrained_url(name, 'openai'):
|
58 |
+
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
|
59 |
+
elif os.path.isfile(name):
|
60 |
+
model_path = name
|
61 |
+
else:
|
62 |
+
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
|
63 |
+
|
64 |
+
try:
|
65 |
+
# loading JIT archive
|
66 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
67 |
+
state_dict = None
|
68 |
+
except RuntimeError:
|
69 |
+
# loading saved state dict
|
70 |
+
if jit:
|
71 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
72 |
+
jit = False
|
73 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
74 |
+
|
75 |
+
if not jit:
|
76 |
+
# Build a non-jit model from the OpenAI jitted model state dict
|
77 |
+
cast_dtype = get_cast_dtype(precision)
|
78 |
+
try:
|
79 |
+
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
|
80 |
+
except KeyError:
|
81 |
+
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
82 |
+
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
|
83 |
+
|
84 |
+
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
|
85 |
+
model = model.to(device)
|
86 |
+
if precision.startswith('amp') or precision == 'fp32':
|
87 |
+
model.float()
|
88 |
+
elif precision == 'bf16':
|
89 |
+
convert_weights_to_lp(model, dtype=torch.bfloat16)
|
90 |
+
|
91 |
+
return model
|
92 |
+
|
93 |
+
# patch the device names
|
94 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
95 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
96 |
+
|
97 |
+
def patch_device(module):
|
98 |
+
try:
|
99 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
100 |
+
except RuntimeError:
|
101 |
+
graphs = []
|
102 |
+
|
103 |
+
if hasattr(module, "forward1"):
|
104 |
+
graphs.append(module.forward1.graph)
|
105 |
+
|
106 |
+
for graph in graphs:
|
107 |
+
for node in graph.findAllNodes("prim::Constant"):
|
108 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
109 |
+
node.copyAttributes(device_node)
|
110 |
+
|
111 |
+
model.apply(patch_device)
|
112 |
+
patch_device(model.encode_image)
|
113 |
+
patch_device(model.encode_text)
|
114 |
+
|
115 |
+
# patch dtype to float32 (typically for CPU)
|
116 |
+
if precision == 'fp32':
|
117 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
118 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
119 |
+
float_node = float_input.node()
|
120 |
+
|
121 |
+
def patch_float(module):
|
122 |
+
try:
|
123 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
124 |
+
except RuntimeError:
|
125 |
+
graphs = []
|
126 |
+
|
127 |
+
if hasattr(module, "forward1"):
|
128 |
+
graphs.append(module.forward1.graph)
|
129 |
+
|
130 |
+
for graph in graphs:
|
131 |
+
for node in graph.findAllNodes("aten::to"):
|
132 |
+
inputs = list(node.inputs())
|
133 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
134 |
+
if inputs[i].node()["value"] == 5:
|
135 |
+
inputs[i].node().copyAttributes(float_node)
|
136 |
+
|
137 |
+
model.apply(patch_float)
|
138 |
+
patch_float(model.encode_image)
|
139 |
+
patch_float(model.encode_text)
|
140 |
+
model.float()
|
141 |
+
|
142 |
+
# ensure image_size attr available at consistent location for both jit and non-jit
|
143 |
+
model.visual.image_size = model.input_resolution.item()
|
144 |
+
return model
|
eva_clip/pretrained.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from functools import partial
|
6 |
+
from typing import Dict, Union
|
7 |
+
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
try:
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
_has_hf_hub = True
|
13 |
+
except ImportError:
|
14 |
+
hf_hub_download = None
|
15 |
+
_has_hf_hub = False
|
16 |
+
|
17 |
+
|
18 |
+
def _pcfg(url='', hf_hub='', filename='', mean=None, std=None):
|
19 |
+
return dict(
|
20 |
+
url=url,
|
21 |
+
hf_hub=hf_hub,
|
22 |
+
mean=mean,
|
23 |
+
std=std,
|
24 |
+
)
|
25 |
+
|
26 |
+
_VITB32 = dict(
|
27 |
+
openai=_pcfg(
|
28 |
+
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
29 |
+
laion400m_e31=_pcfg(
|
30 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
31 |
+
laion400m_e32=_pcfg(
|
32 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
33 |
+
laion2b_e16=_pcfg(
|
34 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
|
35 |
+
laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
|
36 |
+
)
|
37 |
+
|
38 |
+
_VITB32_quickgelu = dict(
|
39 |
+
openai=_pcfg(
|
40 |
+
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
41 |
+
laion400m_e31=_pcfg(
|
42 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
43 |
+
laion400m_e32=_pcfg(
|
44 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
45 |
+
)
|
46 |
+
|
47 |
+
_VITB16 = dict(
|
48 |
+
openai=_pcfg(
|
49 |
+
"https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
|
50 |
+
laion400m_e31=_pcfg(
|
51 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
|
52 |
+
laion400m_e32=_pcfg(
|
53 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
|
54 |
+
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
|
55 |
+
)
|
56 |
+
|
57 |
+
_EVAB16 = dict(
|
58 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
59 |
+
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
|
60 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
61 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
|
62 |
+
)
|
63 |
+
|
64 |
+
_VITB16_PLUS_240 = dict(
|
65 |
+
laion400m_e31=_pcfg(
|
66 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
|
67 |
+
laion400m_e32=_pcfg(
|
68 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
|
69 |
+
)
|
70 |
+
|
71 |
+
_VITL14 = dict(
|
72 |
+
openai=_pcfg(
|
73 |
+
"https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
|
74 |
+
laion400m_e31=_pcfg(
|
75 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
|
76 |
+
laion400m_e32=_pcfg(
|
77 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
|
78 |
+
laion2b_s32b_b82k=_pcfg(
|
79 |
+
hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
|
80 |
+
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
81 |
+
)
|
82 |
+
|
83 |
+
_EVAL14 = dict(
|
84 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
85 |
+
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
|
86 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
87 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
|
88 |
+
)
|
89 |
+
|
90 |
+
_VITL14_336 = dict(
|
91 |
+
openai=_pcfg(
|
92 |
+
"https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
|
93 |
+
)
|
94 |
+
|
95 |
+
_EVAL14_336 = dict(
|
96 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
97 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
|
98 |
+
eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
99 |
+
eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
|
100 |
+
)
|
101 |
+
|
102 |
+
_VITH14 = dict(
|
103 |
+
laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
|
104 |
+
)
|
105 |
+
|
106 |
+
_VITg14 = dict(
|
107 |
+
laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
|
108 |
+
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
|
109 |
+
)
|
110 |
+
|
111 |
+
_EVAg14 = dict(
|
112 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
113 |
+
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
114 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
115 |
+
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
|
116 |
+
)
|
117 |
+
|
118 |
+
_EVAg14_PLUS = dict(
|
119 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
|
120 |
+
eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
|
121 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
122 |
+
eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
|
123 |
+
)
|
124 |
+
|
125 |
+
_VITbigG14 = dict(
|
126 |
+
laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
|
127 |
+
)
|
128 |
+
|
129 |
+
_EVAbigE14 = dict(
|
130 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
131 |
+
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
132 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
133 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
|
134 |
+
)
|
135 |
+
|
136 |
+
_EVAbigE14_PLUS = dict(
|
137 |
+
eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
138 |
+
eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
|
139 |
+
eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
140 |
+
eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
_PRETRAINED = {
|
145 |
+
# "ViT-B-32": _VITB32,
|
146 |
+
"OpenaiCLIP-B-32": _VITB32,
|
147 |
+
"OpenCLIP-B-32": _VITB32,
|
148 |
+
|
149 |
+
# "ViT-B-32-quickgelu": _VITB32_quickgelu,
|
150 |
+
"OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
151 |
+
"OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
152 |
+
|
153 |
+
# "ViT-B-16": _VITB16,
|
154 |
+
"OpenaiCLIP-B-16": _VITB16,
|
155 |
+
"OpenCLIP-B-16": _VITB16,
|
156 |
+
|
157 |
+
"EVA02-B-16": _EVAB16,
|
158 |
+
"EVA02-CLIP-B-16": _EVAB16,
|
159 |
+
|
160 |
+
# "ViT-B-16-plus-240": _VITB16_PLUS_240,
|
161 |
+
"OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
|
162 |
+
|
163 |
+
# "ViT-L-14": _VITL14,
|
164 |
+
"OpenaiCLIP-L-14": _VITL14,
|
165 |
+
"OpenCLIP-L-14": _VITL14,
|
166 |
+
|
167 |
+
"EVA02-L-14": _EVAL14,
|
168 |
+
"EVA02-CLIP-L-14": _EVAL14,
|
169 |
+
|
170 |
+
# "ViT-L-14-336": _VITL14_336,
|
171 |
+
"OpenaiCLIP-L-14-336": _VITL14_336,
|
172 |
+
|
173 |
+
"EVA02-CLIP-L-14-336": _EVAL14_336,
|
174 |
+
|
175 |
+
# "ViT-H-14": _VITH14,
|
176 |
+
# "ViT-g-14": _VITg14,
|
177 |
+
"OpenCLIP-H-14": _VITH14,
|
178 |
+
"OpenCLIP-g-14": _VITg14,
|
179 |
+
|
180 |
+
"EVA01-CLIP-g-14": _EVAg14,
|
181 |
+
"EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
|
182 |
+
|
183 |
+
# "ViT-bigG-14": _VITbigG14,
|
184 |
+
"OpenCLIP-bigG-14": _VITbigG14,
|
185 |
+
|
186 |
+
"EVA02-CLIP-bigE-14": _EVAbigE14,
|
187 |
+
"EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
|
188 |
+
}
|
189 |
+
|
190 |
+
|
191 |
+
def _clean_tag(tag: str):
|
192 |
+
# normalize pretrained tags
|
193 |
+
return tag.lower().replace('-', '_')
|
194 |
+
|
195 |
+
|
196 |
+
def list_pretrained(as_str: bool = False):
|
197 |
+
""" returns list of pretrained models
|
198 |
+
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
199 |
+
"""
|
200 |
+
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
|
201 |
+
|
202 |
+
|
203 |
+
def list_pretrained_models_by_tag(tag: str):
|
204 |
+
""" return all models having the specified pretrain tag """
|
205 |
+
models = []
|
206 |
+
tag = _clean_tag(tag)
|
207 |
+
for k in _PRETRAINED.keys():
|
208 |
+
if tag in _PRETRAINED[k]:
|
209 |
+
models.append(k)
|
210 |
+
return models
|
211 |
+
|
212 |
+
|
213 |
+
def list_pretrained_tags_by_model(model: str):
|
214 |
+
""" return all pretrain tags for the specified model architecture """
|
215 |
+
tags = []
|
216 |
+
if model in _PRETRAINED:
|
217 |
+
tags.extend(_PRETRAINED[model].keys())
|
218 |
+
return tags
|
219 |
+
|
220 |
+
|
221 |
+
def is_pretrained_cfg(model: str, tag: str):
|
222 |
+
if model not in _PRETRAINED:
|
223 |
+
return False
|
224 |
+
return _clean_tag(tag) in _PRETRAINED[model]
|
225 |
+
|
226 |
+
|
227 |
+
def get_pretrained_cfg(model: str, tag: str):
|
228 |
+
if model not in _PRETRAINED:
|
229 |
+
return {}
|
230 |
+
model_pretrained = _PRETRAINED[model]
|
231 |
+
return model_pretrained.get(_clean_tag(tag), {})
|
232 |
+
|
233 |
+
|
234 |
+
def get_pretrained_url(model: str, tag: str):
|
235 |
+
cfg = get_pretrained_cfg(model, _clean_tag(tag))
|
236 |
+
return cfg.get('url', '')
|
237 |
+
|
238 |
+
|
239 |
+
def download_pretrained_from_url(
|
240 |
+
url: str,
|
241 |
+
cache_dir: Union[str, None] = None,
|
242 |
+
):
|
243 |
+
if not cache_dir:
|
244 |
+
cache_dir = os.path.expanduser("~/.cache/clip")
|
245 |
+
os.makedirs(cache_dir, exist_ok=True)
|
246 |
+
filename = os.path.basename(url)
|
247 |
+
|
248 |
+
if 'openaipublic' in url:
|
249 |
+
expected_sha256 = url.split("/")[-2]
|
250 |
+
elif 'mlfoundations' in url:
|
251 |
+
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
|
252 |
+
else:
|
253 |
+
expected_sha256 = ''
|
254 |
+
|
255 |
+
download_target = os.path.join(cache_dir, filename)
|
256 |
+
|
257 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
258 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
259 |
+
|
260 |
+
if os.path.isfile(download_target):
|
261 |
+
if expected_sha256:
|
262 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
263 |
+
return download_target
|
264 |
+
else:
|
265 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
266 |
+
else:
|
267 |
+
return download_target
|
268 |
+
|
269 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
270 |
+
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
271 |
+
while True:
|
272 |
+
buffer = source.read(8192)
|
273 |
+
if not buffer:
|
274 |
+
break
|
275 |
+
|
276 |
+
output.write(buffer)
|
277 |
+
loop.update(len(buffer))
|
278 |
+
|
279 |
+
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
280 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
281 |
+
|
282 |
+
return download_target
|
283 |
+
|
284 |
+
|
285 |
+
def has_hf_hub(necessary=False):
|
286 |
+
if not _has_hf_hub and necessary:
|
287 |
+
# if no HF Hub module installed, and it is necessary to continue, raise error
|
288 |
+
raise RuntimeError(
|
289 |
+
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
290 |
+
return _has_hf_hub
|
291 |
+
|
292 |
+
|
293 |
+
def download_pretrained_from_hf(
|
294 |
+
model_id: str,
|
295 |
+
filename: str = 'open_clip_pytorch_model.bin',
|
296 |
+
revision=None,
|
297 |
+
cache_dir: Union[str, None] = None,
|
298 |
+
):
|
299 |
+
has_hf_hub(True)
|
300 |
+
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
|
301 |
+
return cached_file
|
302 |
+
|
303 |
+
|
304 |
+
def download_pretrained(
|
305 |
+
cfg: Dict,
|
306 |
+
force_hf_hub: bool = False,
|
307 |
+
cache_dir: Union[str, None] = None,
|
308 |
+
):
|
309 |
+
target = ''
|
310 |
+
if not cfg:
|
311 |
+
return target
|
312 |
+
|
313 |
+
download_url = cfg.get('url', '')
|
314 |
+
download_hf_hub = cfg.get('hf_hub', '')
|
315 |
+
if download_hf_hub and force_hf_hub:
|
316 |
+
# use HF hub even if url exists
|
317 |
+
download_url = ''
|
318 |
+
|
319 |
+
if download_url:
|
320 |
+
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
|
321 |
+
elif download_hf_hub:
|
322 |
+
has_hf_hub(True)
|
323 |
+
# we assume the hf_hub entries in pretrained config combine model_id + filename in
|
324 |
+
# 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
|
325 |
+
# use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
|
326 |
+
model_id, filename = os.path.split(download_hf_hub)
|
327 |
+
if filename:
|
328 |
+
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
|
329 |
+
else:
|
330 |
+
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
331 |
+
|
332 |
+
return target
|
eva_clip/rope.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import pi
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
import logging
|
6 |
+
|
7 |
+
def broadcat(tensors, dim = -1):
|
8 |
+
num_tensors = len(tensors)
|
9 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
10 |
+
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
11 |
+
shape_len = list(shape_lens)[0]
|
12 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
13 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
14 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
15 |
+
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
16 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
17 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
18 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
19 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
20 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
21 |
+
return torch.cat(tensors, dim = dim)
|
22 |
+
|
23 |
+
def rotate_half(x):
|
24 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
25 |
+
x1, x2 = x.unbind(dim = -1)
|
26 |
+
x = torch.stack((-x2, x1), dim = -1)
|
27 |
+
return rearrange(x, '... d r -> ... (d r)')
|
28 |
+
|
29 |
+
|
30 |
+
class VisionRotaryEmbedding(nn.Module):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
dim,
|
34 |
+
pt_seq_len,
|
35 |
+
ft_seq_len=None,
|
36 |
+
custom_freqs = None,
|
37 |
+
freqs_for = 'lang',
|
38 |
+
theta = 10000,
|
39 |
+
max_freq = 10,
|
40 |
+
num_freqs = 1,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
if custom_freqs:
|
44 |
+
freqs = custom_freqs
|
45 |
+
elif freqs_for == 'lang':
|
46 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
47 |
+
elif freqs_for == 'pixel':
|
48 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
49 |
+
elif freqs_for == 'constant':
|
50 |
+
freqs = torch.ones(num_freqs).float()
|
51 |
+
else:
|
52 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
53 |
+
|
54 |
+
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
55 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
56 |
+
|
57 |
+
freqs_h = torch.einsum('..., f -> ... f', t, freqs)
|
58 |
+
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
|
59 |
+
|
60 |
+
freqs_w = torch.einsum('..., f -> ... f', t, freqs)
|
61 |
+
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
|
62 |
+
|
63 |
+
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1)
|
64 |
+
|
65 |
+
self.register_buffer("freqs_cos", freqs.cos())
|
66 |
+
self.register_buffer("freqs_sin", freqs.sin())
|
67 |
+
|
68 |
+
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
69 |
+
|
70 |
+
def forward(self, t, start_index = 0):
|
71 |
+
rot_dim = self.freqs_cos.shape[-1]
|
72 |
+
end_index = start_index + rot_dim
|
73 |
+
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
|
74 |
+
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
|
75 |
+
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
|
76 |
+
|
77 |
+
return torch.cat((t_left, t, t_right), dim = -1)
|
78 |
+
|
79 |
+
class VisionRotaryEmbeddingFast(nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
dim,
|
83 |
+
pt_seq_len,
|
84 |
+
ft_seq_len=None,
|
85 |
+
custom_freqs = None,
|
86 |
+
freqs_for = 'lang',
|
87 |
+
theta = 10000,
|
88 |
+
max_freq = 10,
|
89 |
+
num_freqs = 1,
|
90 |
+
patch_dropout = 0.
|
91 |
+
):
|
92 |
+
super().__init__()
|
93 |
+
if custom_freqs:
|
94 |
+
freqs = custom_freqs
|
95 |
+
elif freqs_for == 'lang':
|
96 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
97 |
+
elif freqs_for == 'pixel':
|
98 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
99 |
+
elif freqs_for == 'constant':
|
100 |
+
freqs = torch.ones(num_freqs).float()
|
101 |
+
else:
|
102 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
103 |
+
|
104 |
+
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
105 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
106 |
+
|
107 |
+
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
108 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
109 |
+
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
110 |
+
|
111 |
+
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
112 |
+
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
113 |
+
|
114 |
+
self.patch_dropout = patch_dropout
|
115 |
+
|
116 |
+
self.register_buffer("freqs_cos", freqs_cos)
|
117 |
+
self.register_buffer("freqs_sin", freqs_sin)
|
118 |
+
|
119 |
+
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
120 |
+
|
121 |
+
def forward(self, t, patch_indices_keep=None):
|
122 |
+
if patch_indices_keep is not None:
|
123 |
+
batch = t.size()[0]
|
124 |
+
batch_indices = torch.arange(batch)
|
125 |
+
batch_indices = batch_indices[..., None]
|
126 |
+
|
127 |
+
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
128 |
+
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
129 |
+
|
130 |
+
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
131 |
+
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
132 |
+
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
133 |
+
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
134 |
+
|
135 |
+
return t * freqs_cos + rotate_half(t) * freqs_sin
|
136 |
+
|
137 |
+
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
eva_clip/timm_model.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" timm model adapter
|
2 |
+
|
3 |
+
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
|
4 |
+
"""
|
5 |
+
import logging
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
try:
|
12 |
+
import timm
|
13 |
+
from timm.models.layers import Mlp, to_2tuple
|
14 |
+
try:
|
15 |
+
# old timm imports < 0.8.1
|
16 |
+
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
17 |
+
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
|
18 |
+
except ImportError:
|
19 |
+
# new timm imports >= 0.8.1
|
20 |
+
from timm.layers import RotAttentionPool2d
|
21 |
+
from timm.layers import AttentionPool2d as AbsAttentionPool2d
|
22 |
+
except ImportError:
|
23 |
+
timm = None
|
24 |
+
|
25 |
+
from .utils import freeze_batch_norm_2d
|
26 |
+
|
27 |
+
|
28 |
+
class TimmModel(nn.Module):
|
29 |
+
""" timm model adapter
|
30 |
+
# FIXME this adapter is a work in progress, may change in ways that break weight compat
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
model_name,
|
36 |
+
embed_dim,
|
37 |
+
image_size=224,
|
38 |
+
pool='avg',
|
39 |
+
proj='linear',
|
40 |
+
proj_bias=False,
|
41 |
+
drop=0.,
|
42 |
+
pretrained=False):
|
43 |
+
super().__init__()
|
44 |
+
if timm is None:
|
45 |
+
raise RuntimeError("Please `pip install timm` to use timm models.")
|
46 |
+
|
47 |
+
self.image_size = to_2tuple(image_size)
|
48 |
+
self.trunk = timm.create_model(model_name, pretrained=pretrained)
|
49 |
+
feat_size = self.trunk.default_cfg.get('pool_size', None)
|
50 |
+
feature_ndim = 1 if not feat_size else 2
|
51 |
+
if pool in ('abs_attn', 'rot_attn'):
|
52 |
+
assert feature_ndim == 2
|
53 |
+
# if attn pooling used, remove both classifier and default pool
|
54 |
+
self.trunk.reset_classifier(0, global_pool='')
|
55 |
+
else:
|
56 |
+
# reset global pool if pool config set, otherwise leave as network default
|
57 |
+
reset_kwargs = dict(global_pool=pool) if pool else {}
|
58 |
+
self.trunk.reset_classifier(0, **reset_kwargs)
|
59 |
+
prev_chs = self.trunk.num_features
|
60 |
+
|
61 |
+
head_layers = OrderedDict()
|
62 |
+
if pool == 'abs_attn':
|
63 |
+
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
|
64 |
+
prev_chs = embed_dim
|
65 |
+
elif pool == 'rot_attn':
|
66 |
+
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
67 |
+
prev_chs = embed_dim
|
68 |
+
else:
|
69 |
+
assert proj, 'projection layer needed if non-attention pooling is used.'
|
70 |
+
|
71 |
+
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
72 |
+
if proj == 'linear':
|
73 |
+
head_layers['drop'] = nn.Dropout(drop)
|
74 |
+
head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
|
75 |
+
elif proj == 'mlp':
|
76 |
+
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias))
|
77 |
+
|
78 |
+
self.head = nn.Sequential(head_layers)
|
79 |
+
|
80 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
81 |
+
""" lock modules
|
82 |
+
Args:
|
83 |
+
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
84 |
+
"""
|
85 |
+
if not unlocked_groups:
|
86 |
+
# lock full model
|
87 |
+
for param in self.trunk.parameters():
|
88 |
+
param.requires_grad = False
|
89 |
+
if freeze_bn_stats:
|
90 |
+
freeze_batch_norm_2d(self.trunk)
|
91 |
+
else:
|
92 |
+
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
93 |
+
try:
|
94 |
+
# FIXME import here until API stable and in an official release
|
95 |
+
from timm.models.helpers import group_parameters, group_modules
|
96 |
+
except ImportError:
|
97 |
+
raise RuntimeError(
|
98 |
+
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
|
99 |
+
matcher = self.trunk.group_matcher()
|
100 |
+
gparams = group_parameters(self.trunk, matcher)
|
101 |
+
max_layer_id = max(gparams.keys())
|
102 |
+
max_layer_id = max_layer_id - unlocked_groups
|
103 |
+
for group_idx in range(max_layer_id + 1):
|
104 |
+
group = gparams[group_idx]
|
105 |
+
for param in group:
|
106 |
+
self.trunk.get_parameter(param).requires_grad = False
|
107 |
+
if freeze_bn_stats:
|
108 |
+
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
109 |
+
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
110 |
+
freeze_batch_norm_2d(self.trunk, gmodules)
|
111 |
+
|
112 |
+
@torch.jit.ignore
|
113 |
+
def set_grad_checkpointing(self, enable=True):
|
114 |
+
try:
|
115 |
+
self.trunk.set_grad_checkpointing(enable)
|
116 |
+
except Exception as e:
|
117 |
+
logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
x = self.trunk(x)
|
121 |
+
x = self.head(x)
|
122 |
+
return x
|
eva_clip/tokenizer.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP tokenizer
|
2 |
+
|
3 |
+
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
4 |
+
"""
|
5 |
+
import gzip
|
6 |
+
import html
|
7 |
+
import os
|
8 |
+
from functools import lru_cache
|
9 |
+
from typing import Union, List
|
10 |
+
|
11 |
+
import ftfy
|
12 |
+
import regex as re
|
13 |
+
import torch
|
14 |
+
|
15 |
+
# https://stackoverflow.com/q/62691279
|
16 |
+
import os
|
17 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
18 |
+
|
19 |
+
|
20 |
+
@lru_cache()
|
21 |
+
def default_bpe():
|
22 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
23 |
+
|
24 |
+
|
25 |
+
@lru_cache()
|
26 |
+
def bytes_to_unicode():
|
27 |
+
"""
|
28 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
29 |
+
The reversible bpe codes work on unicode strings.
|
30 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
31 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
32 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
33 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
34 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
35 |
+
"""
|
36 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
37 |
+
cs = bs[:]
|
38 |
+
n = 0
|
39 |
+
for b in range(2**8):
|
40 |
+
if b not in bs:
|
41 |
+
bs.append(b)
|
42 |
+
cs.append(2**8+n)
|
43 |
+
n += 1
|
44 |
+
cs = [chr(n) for n in cs]
|
45 |
+
return dict(zip(bs, cs))
|
46 |
+
|
47 |
+
|
48 |
+
def get_pairs(word):
|
49 |
+
"""Return set of symbol pairs in a word.
|
50 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
51 |
+
"""
|
52 |
+
pairs = set()
|
53 |
+
prev_char = word[0]
|
54 |
+
for char in word[1:]:
|
55 |
+
pairs.add((prev_char, char))
|
56 |
+
prev_char = char
|
57 |
+
return pairs
|
58 |
+
|
59 |
+
|
60 |
+
def basic_clean(text):
|
61 |
+
text = ftfy.fix_text(text)
|
62 |
+
text = html.unescape(html.unescape(text))
|
63 |
+
return text.strip()
|
64 |
+
|
65 |
+
|
66 |
+
def whitespace_clean(text):
|
67 |
+
text = re.sub(r'\s+', ' ', text)
|
68 |
+
text = text.strip()
|
69 |
+
return text
|
70 |
+
|
71 |
+
|
72 |
+
class SimpleTokenizer(object):
|
73 |
+
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
74 |
+
self.byte_encoder = bytes_to_unicode()
|
75 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
76 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
77 |
+
merges = merges[1:49152-256-2+1]
|
78 |
+
merges = [tuple(merge.split()) for merge in merges]
|
79 |
+
vocab = list(bytes_to_unicode().values())
|
80 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
81 |
+
for merge in merges:
|
82 |
+
vocab.append(''.join(merge))
|
83 |
+
if not special_tokens:
|
84 |
+
special_tokens = ['<start_of_text>', '<end_of_text>']
|
85 |
+
else:
|
86 |
+
special_tokens = ['<start_of_text>', '<end_of_text>'] + special_tokens
|
87 |
+
vocab.extend(special_tokens)
|
88 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
89 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
90 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
91 |
+
self.cache = {t:t for t in special_tokens}
|
92 |
+
special = "|".join(special_tokens)
|
93 |
+
self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
94 |
+
|
95 |
+
self.vocab_size = len(self.encoder)
|
96 |
+
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
97 |
+
|
98 |
+
def bpe(self, token):
|
99 |
+
if token in self.cache:
|
100 |
+
return self.cache[token]
|
101 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
102 |
+
pairs = get_pairs(word)
|
103 |
+
|
104 |
+
if not pairs:
|
105 |
+
return token+'</w>'
|
106 |
+
|
107 |
+
while True:
|
108 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
109 |
+
if bigram not in self.bpe_ranks:
|
110 |
+
break
|
111 |
+
first, second = bigram
|
112 |
+
new_word = []
|
113 |
+
i = 0
|
114 |
+
while i < len(word):
|
115 |
+
try:
|
116 |
+
j = word.index(first, i)
|
117 |
+
new_word.extend(word[i:j])
|
118 |
+
i = j
|
119 |
+
except:
|
120 |
+
new_word.extend(word[i:])
|
121 |
+
break
|
122 |
+
|
123 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
124 |
+
new_word.append(first+second)
|
125 |
+
i += 2
|
126 |
+
else:
|
127 |
+
new_word.append(word[i])
|
128 |
+
i += 1
|
129 |
+
new_word = tuple(new_word)
|
130 |
+
word = new_word
|
131 |
+
if len(word) == 1:
|
132 |
+
break
|
133 |
+
else:
|
134 |
+
pairs = get_pairs(word)
|
135 |
+
word = ' '.join(word)
|
136 |
+
self.cache[token] = word
|
137 |
+
return word
|
138 |
+
|
139 |
+
def encode(self, text):
|
140 |
+
bpe_tokens = []
|
141 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
142 |
+
for token in re.findall(self.pat, text):
|
143 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
144 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
145 |
+
return bpe_tokens
|
146 |
+
|
147 |
+
def decode(self, tokens):
|
148 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
149 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
150 |
+
return text
|
151 |
+
|
152 |
+
|
153 |
+
_tokenizer = SimpleTokenizer()
|
154 |
+
|
155 |
+
|
156 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
|
157 |
+
"""
|
158 |
+
Returns the tokenized representation of given input string(s)
|
159 |
+
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
texts : Union[str, List[str]]
|
163 |
+
An input string or a list of input strings to tokenize
|
164 |
+
context_length : int
|
165 |
+
The context length to use; all CLIP models use 77 as the context length
|
166 |
+
|
167 |
+
Returns
|
168 |
+
-------
|
169 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
170 |
+
"""
|
171 |
+
if isinstance(texts, str):
|
172 |
+
texts = [texts]
|
173 |
+
|
174 |
+
sot_token = _tokenizer.encoder["<start_of_text>"]
|
175 |
+
eot_token = _tokenizer.encoder["<end_of_text>"]
|
176 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
177 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
178 |
+
|
179 |
+
for i, tokens in enumerate(all_tokens):
|
180 |
+
if len(tokens) > context_length:
|
181 |
+
tokens = tokens[:context_length] # Truncate
|
182 |
+
tokens[-1] = eot_token
|
183 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
184 |
+
|
185 |
+
return result
|
186 |
+
|
187 |
+
|
188 |
+
class HFTokenizer:
|
189 |
+
"HuggingFace tokenizer wrapper"
|
190 |
+
def __init__(self, tokenizer_name:str):
|
191 |
+
from transformers import AutoTokenizer
|
192 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
193 |
+
|
194 |
+
def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor:
|
195 |
+
# same cleaning as for default tokenizer, except lowercasing
|
196 |
+
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
197 |
+
if isinstance(texts, str):
|
198 |
+
texts = [texts]
|
199 |
+
texts = [whitespace_clean(basic_clean(text)) for text in texts]
|
200 |
+
input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids
|
201 |
+
return input_ids
|
eva_clip/transform.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Sequence, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torchvision.transforms.functional as F
|
6 |
+
|
7 |
+
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
|
8 |
+
CenterCrop
|
9 |
+
|
10 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
11 |
+
|
12 |
+
|
13 |
+
class ResizeMaxSize(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
|
16 |
+
super().__init__()
|
17 |
+
if not isinstance(max_size, int):
|
18 |
+
raise TypeError(f"Size should be int. Got {type(max_size)}")
|
19 |
+
self.max_size = max_size
|
20 |
+
self.interpolation = interpolation
|
21 |
+
self.fn = min if fn == 'min' else min
|
22 |
+
self.fill = fill
|
23 |
+
|
24 |
+
def forward(self, img):
|
25 |
+
if isinstance(img, torch.Tensor):
|
26 |
+
height, width = img.shape[:2]
|
27 |
+
else:
|
28 |
+
width, height = img.size
|
29 |
+
scale = self.max_size / float(max(height, width))
|
30 |
+
if scale != 1.0:
|
31 |
+
new_size = tuple(round(dim * scale) for dim in (height, width))
|
32 |
+
img = F.resize(img, new_size, self.interpolation)
|
33 |
+
pad_h = self.max_size - new_size[0]
|
34 |
+
pad_w = self.max_size - new_size[1]
|
35 |
+
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
|
36 |
+
return img
|
37 |
+
|
38 |
+
|
39 |
+
def _convert_to_rgb(image):
|
40 |
+
return image.convert('RGB')
|
41 |
+
|
42 |
+
|
43 |
+
# class CatGen(nn.Module):
|
44 |
+
# def __init__(self, num=4):
|
45 |
+
# self.num = num
|
46 |
+
# def mixgen_batch(image, text):
|
47 |
+
# batch_size = image.shape[0]
|
48 |
+
# index = np.random.permutation(batch_size)
|
49 |
+
|
50 |
+
# cat_images = []
|
51 |
+
# for i in range(batch_size):
|
52 |
+
# # image mixup
|
53 |
+
# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:]
|
54 |
+
# # text concat
|
55 |
+
# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0]
|
56 |
+
# text = torch.stack(text)
|
57 |
+
# return image, text
|
58 |
+
|
59 |
+
|
60 |
+
def image_transform(
|
61 |
+
image_size: int,
|
62 |
+
is_train: bool,
|
63 |
+
mean: Optional[Tuple[float, ...]] = None,
|
64 |
+
std: Optional[Tuple[float, ...]] = None,
|
65 |
+
resize_longest_max: bool = False,
|
66 |
+
fill_color: int = 0,
|
67 |
+
):
|
68 |
+
mean = mean or OPENAI_DATASET_MEAN
|
69 |
+
if not isinstance(mean, (list, tuple)):
|
70 |
+
mean = (mean,) * 3
|
71 |
+
|
72 |
+
std = std or OPENAI_DATASET_STD
|
73 |
+
if not isinstance(std, (list, tuple)):
|
74 |
+
std = (std,) * 3
|
75 |
+
|
76 |
+
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
|
77 |
+
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
|
78 |
+
image_size = image_size[0]
|
79 |
+
|
80 |
+
normalize = Normalize(mean=mean, std=std)
|
81 |
+
if is_train:
|
82 |
+
return Compose([
|
83 |
+
RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC),
|
84 |
+
_convert_to_rgb,
|
85 |
+
ToTensor(),
|
86 |
+
normalize,
|
87 |
+
])
|
88 |
+
else:
|
89 |
+
if resize_longest_max:
|
90 |
+
transforms = [
|
91 |
+
ResizeMaxSize(image_size, fill=fill_color)
|
92 |
+
]
|
93 |
+
else:
|
94 |
+
transforms = [
|
95 |
+
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
96 |
+
CenterCrop(image_size),
|
97 |
+
]
|
98 |
+
transforms.extend([
|
99 |
+
_convert_to_rgb,
|
100 |
+
ToTensor(),
|
101 |
+
normalize,
|
102 |
+
])
|
103 |
+
return Compose(transforms)
|
eva_clip/transformer.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from collections import OrderedDict
|
4 |
+
import math
|
5 |
+
from typing import Callable, Optional, Sequence
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
try:
|
12 |
+
from timm.models.layers import trunc_normal_
|
13 |
+
except:
|
14 |
+
from timm.layers import trunc_normal_
|
15 |
+
|
16 |
+
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
+
from .utils import to_2tuple
|
18 |
+
|
19 |
+
if os.getenv('ENV_TYPE') == 'deepspeed':
|
20 |
+
try:
|
21 |
+
import deepspeed
|
22 |
+
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
23 |
+
except:
|
24 |
+
print("Please 'pip install deepspeed'")
|
25 |
+
deepspeed = None
|
26 |
+
from torch.utils.checkpoint import checkpoint
|
27 |
+
else:
|
28 |
+
from torch.utils.checkpoint import checkpoint
|
29 |
+
|
30 |
+
try:
|
31 |
+
import xformers.ops as xops
|
32 |
+
except ImportError:
|
33 |
+
xops = None
|
34 |
+
print("Please 'pip install xformers'")
|
35 |
+
|
36 |
+
class LayerNormFp32(nn.LayerNorm):
|
37 |
+
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
38 |
+
def __init__(self, *args, **kwargs):
|
39 |
+
super().__init__(*args, **kwargs)
|
40 |
+
|
41 |
+
def forward(self, x: torch.Tensor):
|
42 |
+
output = F.layer_norm(
|
43 |
+
x.float(),
|
44 |
+
self.normalized_shape,
|
45 |
+
self.weight.float() if self.weight is not None else None,
|
46 |
+
self.bias.float() if self.bias is not None else None,
|
47 |
+
self.eps,
|
48 |
+
)
|
49 |
+
return output.type_as(x)
|
50 |
+
|
51 |
+
|
52 |
+
class LayerNorm(nn.LayerNorm):
|
53 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
54 |
+
|
55 |
+
def forward(self, x: torch.Tensor):
|
56 |
+
orig_type = x.dtype
|
57 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
58 |
+
return x.to(orig_type)
|
59 |
+
|
60 |
+
class QuickGELU(nn.Module):
|
61 |
+
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
62 |
+
def forward(self, x: torch.Tensor):
|
63 |
+
return x * torch.sigmoid(1.702 * x)
|
64 |
+
|
65 |
+
|
66 |
+
class LayerScale(nn.Module):
|
67 |
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
68 |
+
super().__init__()
|
69 |
+
self.inplace = inplace
|
70 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
74 |
+
|
75 |
+
class PatchDropout(nn.Module):
|
76 |
+
"""
|
77 |
+
https://arxiv.org/abs/2212.00794
|
78 |
+
"""
|
79 |
+
|
80 |
+
def __init__(self, prob, exclude_first_token=True):
|
81 |
+
super().__init__()
|
82 |
+
assert 0 <= prob < 1.
|
83 |
+
self.prob = prob
|
84 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
85 |
+
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
if not self.training or self.prob == 0.:
|
89 |
+
return x
|
90 |
+
|
91 |
+
if self.exclude_first_token:
|
92 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
93 |
+
else:
|
94 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
95 |
+
|
96 |
+
batch = x.size()[0]
|
97 |
+
num_tokens = x.size()[1]
|
98 |
+
|
99 |
+
batch_indices = torch.arange(batch)
|
100 |
+
batch_indices = batch_indices[..., None]
|
101 |
+
|
102 |
+
keep_prob = 1 - self.prob
|
103 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
104 |
+
|
105 |
+
rand = torch.randn(batch, num_tokens)
|
106 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
107 |
+
|
108 |
+
x = x[batch_indices, patch_indices_keep]
|
109 |
+
|
110 |
+
if self.exclude_first_token:
|
111 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
112 |
+
|
113 |
+
if self.training and os.getenv('RoPE') == '1':
|
114 |
+
return x, patch_indices_keep
|
115 |
+
|
116 |
+
return x
|
117 |
+
|
118 |
+
|
119 |
+
def _in_projection_packed(
|
120 |
+
q: torch.Tensor,
|
121 |
+
k: torch.Tensor,
|
122 |
+
v: torch.Tensor,
|
123 |
+
w: torch.Tensor,
|
124 |
+
b: Optional[torch.Tensor] = None,
|
125 |
+
):
|
126 |
+
"""
|
127 |
+
https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726
|
128 |
+
"""
|
129 |
+
E = q.size(-1)
|
130 |
+
if k is v:
|
131 |
+
if q is k:
|
132 |
+
# self-attention
|
133 |
+
return F.linear(q, w, b).chunk(3, dim=-1)
|
134 |
+
else:
|
135 |
+
# encoder-decoder attention
|
136 |
+
w_q, w_kv = w.split([E, E * 2])
|
137 |
+
if b is None:
|
138 |
+
b_q = b_kv = None
|
139 |
+
else:
|
140 |
+
b_q, b_kv = b.split([E, E * 2])
|
141 |
+
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
|
142 |
+
else:
|
143 |
+
w_q, w_k, w_v = w.chunk(3)
|
144 |
+
if b is None:
|
145 |
+
b_q = b_k = b_v = None
|
146 |
+
else:
|
147 |
+
b_q, b_k, b_v = b.chunk(3)
|
148 |
+
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
|
149 |
+
|
150 |
+
class Attention(nn.Module):
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
dim,
|
154 |
+
num_heads=8,
|
155 |
+
qkv_bias=True,
|
156 |
+
scaled_cosine=False,
|
157 |
+
scale_heads=False,
|
158 |
+
logit_scale_max=math.log(1. / 0.01),
|
159 |
+
attn_drop=0.,
|
160 |
+
proj_drop=0.,
|
161 |
+
xattn=False,
|
162 |
+
rope=False
|
163 |
+
):
|
164 |
+
super().__init__()
|
165 |
+
self.scaled_cosine = scaled_cosine
|
166 |
+
self.scale_heads = scale_heads
|
167 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
168 |
+
self.num_heads = num_heads
|
169 |
+
self.head_dim = dim // num_heads
|
170 |
+
self.scale = self.head_dim ** -0.5
|
171 |
+
self.logit_scale_max = logit_scale_max
|
172 |
+
|
173 |
+
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
174 |
+
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
175 |
+
if qkv_bias:
|
176 |
+
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
177 |
+
else:
|
178 |
+
self.in_proj_bias = None
|
179 |
+
|
180 |
+
if self.scaled_cosine:
|
181 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
182 |
+
else:
|
183 |
+
self.logit_scale = None
|
184 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
185 |
+
if self.scale_heads:
|
186 |
+
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
187 |
+
else:
|
188 |
+
self.head_scale = None
|
189 |
+
self.out_proj = nn.Linear(dim, dim)
|
190 |
+
self.out_drop = nn.Dropout(proj_drop)
|
191 |
+
self.xattn = xattn
|
192 |
+
self.xattn_drop = attn_drop
|
193 |
+
self.rope = rope
|
194 |
+
|
195 |
+
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
|
196 |
+
L, N, C = x.shape
|
197 |
+
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
|
198 |
+
if self.xattn:
|
199 |
+
q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
200 |
+
k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
201 |
+
v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
|
202 |
+
|
203 |
+
x = xops.memory_efficient_attention(
|
204 |
+
q, k, v,
|
205 |
+
p=self.xattn_drop,
|
206 |
+
scale=self.scale if self.logit_scale is None else None,
|
207 |
+
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None,
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
211 |
+
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
212 |
+
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
213 |
+
|
214 |
+
if self.logit_scale is not None:
|
215 |
+
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
216 |
+
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
217 |
+
attn = attn.view(N, self.num_heads, L, L) * logit_scale
|
218 |
+
attn = attn.view(-1, L, L)
|
219 |
+
else:
|
220 |
+
q = q * self.scale
|
221 |
+
attn = torch.bmm(q, k.transpose(-1, -2))
|
222 |
+
|
223 |
+
if attn_mask is not None:
|
224 |
+
if attn_mask.dtype == torch.bool:
|
225 |
+
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
226 |
+
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
227 |
+
attn_mask = new_attn_mask
|
228 |
+
attn += attn_mask
|
229 |
+
|
230 |
+
attn = attn.softmax(dim=-1)
|
231 |
+
attn = self.attn_drop(attn)
|
232 |
+
|
233 |
+
x = torch.bmm(attn, v)
|
234 |
+
|
235 |
+
if self.head_scale is not None:
|
236 |
+
x = x.view(N, self.num_heads, L, C) * self.head_scale
|
237 |
+
x = x.view(-1, L, C)
|
238 |
+
x = x.transpose(0, 1).reshape(L, N, C)
|
239 |
+
x = self.out_proj(x)
|
240 |
+
x = self.out_drop(x)
|
241 |
+
return x
|
242 |
+
|
243 |
+
class CustomAttention(nn.Module):
|
244 |
+
def __init__(
|
245 |
+
self,
|
246 |
+
dim,
|
247 |
+
num_heads=8,
|
248 |
+
qkv_bias=True,
|
249 |
+
scaled_cosine=True,
|
250 |
+
scale_heads=False,
|
251 |
+
logit_scale_max=math.log(1. / 0.01),
|
252 |
+
attn_drop=0.,
|
253 |
+
proj_drop=0.,
|
254 |
+
xattn=False
|
255 |
+
):
|
256 |
+
super().__init__()
|
257 |
+
self.scaled_cosine = scaled_cosine
|
258 |
+
self.scale_heads = scale_heads
|
259 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
260 |
+
self.num_heads = num_heads
|
261 |
+
self.head_dim = dim // num_heads
|
262 |
+
self.scale = self.head_dim ** -0.5
|
263 |
+
self.logit_scale_max = logit_scale_max
|
264 |
+
|
265 |
+
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
266 |
+
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
267 |
+
if qkv_bias:
|
268 |
+
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
269 |
+
else:
|
270 |
+
self.in_proj_bias = None
|
271 |
+
|
272 |
+
if self.scaled_cosine:
|
273 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
274 |
+
else:
|
275 |
+
self.logit_scale = None
|
276 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
277 |
+
if self.scale_heads:
|
278 |
+
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
279 |
+
else:
|
280 |
+
self.head_scale = None
|
281 |
+
self.out_proj = nn.Linear(dim, dim)
|
282 |
+
self.out_drop = nn.Dropout(proj_drop)
|
283 |
+
self.xattn = xattn
|
284 |
+
self.xattn_drop = attn_drop
|
285 |
+
|
286 |
+
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
287 |
+
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
|
288 |
+
N_q, B_q, C_q = q.shape
|
289 |
+
N_k, B_k, C_k = k.shape
|
290 |
+
N_v, B_v, C_v = v.shape
|
291 |
+
if self.xattn:
|
292 |
+
# B, N, C -> B, N, num_heads, C
|
293 |
+
q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1)
|
294 |
+
k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1)
|
295 |
+
v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1)
|
296 |
+
|
297 |
+
x = xops.memory_efficient_attention(
|
298 |
+
q, k, v,
|
299 |
+
p=self.xattn_drop,
|
300 |
+
scale=self.scale if self.logit_scale is None else None,
|
301 |
+
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
# B*H, L, C
|
305 |
+
q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1)
|
306 |
+
k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1)
|
307 |
+
v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1)
|
308 |
+
|
309 |
+
if self.logit_scale is not None:
|
310 |
+
# B*H, N_q, N_k
|
311 |
+
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
312 |
+
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
313 |
+
attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale
|
314 |
+
attn = attn.view(-1, N_q, N_k)
|
315 |
+
else:
|
316 |
+
q = q * self.scale
|
317 |
+
attn = torch.bmm(q, k.transpose(-1, -2))
|
318 |
+
|
319 |
+
if attn_mask is not None:
|
320 |
+
if attn_mask.dtype == torch.bool:
|
321 |
+
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
322 |
+
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
323 |
+
attn_mask = new_attn_mask
|
324 |
+
attn += attn_mask
|
325 |
+
|
326 |
+
attn = attn.softmax(dim=-1)
|
327 |
+
attn = self.attn_drop(attn)
|
328 |
+
|
329 |
+
x = torch.bmm(attn, v)
|
330 |
+
|
331 |
+
if self.head_scale is not None:
|
332 |
+
x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale
|
333 |
+
x = x.view(-1, N_q, C_q)
|
334 |
+
x = x.transpose(0, 1).reshape(N_q, B_q, C_q)
|
335 |
+
x = self.out_proj(x)
|
336 |
+
x = self.out_drop(x)
|
337 |
+
return x
|
338 |
+
|
339 |
+
class CustomResidualAttentionBlock(nn.Module):
|
340 |
+
def __init__(
|
341 |
+
self,
|
342 |
+
d_model: int,
|
343 |
+
n_head: int,
|
344 |
+
mlp_ratio: float = 4.0,
|
345 |
+
ls_init_value: float = None,
|
346 |
+
act_layer: Callable = nn.GELU,
|
347 |
+
norm_layer: Callable = LayerNorm,
|
348 |
+
scale_cosine_attn: bool = False,
|
349 |
+
scale_heads: bool = False,
|
350 |
+
scale_attn: bool = False,
|
351 |
+
scale_fc: bool = False,
|
352 |
+
cross_attn: bool = False,
|
353 |
+
xattn: bool = False,
|
354 |
+
):
|
355 |
+
super().__init__()
|
356 |
+
|
357 |
+
self.ln_1 = norm_layer(d_model)
|
358 |
+
self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1
|
359 |
+
self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1
|
360 |
+
self.attn = CustomAttention(
|
361 |
+
d_model, n_head,
|
362 |
+
qkv_bias=True,
|
363 |
+
attn_drop=0.,
|
364 |
+
proj_drop=0.,
|
365 |
+
scaled_cosine=scale_cosine_attn,
|
366 |
+
scale_heads=scale_heads,
|
367 |
+
xattn=xattn
|
368 |
+
)
|
369 |
+
|
370 |
+
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
|
371 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
372 |
+
|
373 |
+
self.ln_2 = norm_layer(d_model)
|
374 |
+
mlp_width = int(d_model * mlp_ratio)
|
375 |
+
self.mlp = nn.Sequential(OrderedDict([
|
376 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
377 |
+
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
|
378 |
+
("gelu", act_layer()),
|
379 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
380 |
+
]))
|
381 |
+
|
382 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
383 |
+
|
384 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
385 |
+
q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask)))
|
386 |
+
q = q + self.ls_2(self.mlp(self.ln_2(q)))
|
387 |
+
return q
|
388 |
+
|
389 |
+
class CustomTransformer(nn.Module):
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
width: int,
|
393 |
+
layers: int,
|
394 |
+
heads: int,
|
395 |
+
mlp_ratio: float = 4.0,
|
396 |
+
ls_init_value: float = None,
|
397 |
+
act_layer: Callable = nn.GELU,
|
398 |
+
norm_layer: Callable = LayerNorm,
|
399 |
+
scale_cosine_attn: bool = True,
|
400 |
+
scale_heads: bool = False,
|
401 |
+
scale_attn: bool = False,
|
402 |
+
scale_fc: bool = False,
|
403 |
+
cross_attn: bool = False,
|
404 |
+
xattn: bool = False,
|
405 |
+
):
|
406 |
+
super().__init__()
|
407 |
+
self.width = width
|
408 |
+
self.layers = layers
|
409 |
+
self.grad_checkpointing = False
|
410 |
+
self.xattn = xattn
|
411 |
+
|
412 |
+
self.resblocks = nn.ModuleList([
|
413 |
+
CustomResidualAttentionBlock(
|
414 |
+
width,
|
415 |
+
heads,
|
416 |
+
mlp_ratio,
|
417 |
+
ls_init_value=ls_init_value,
|
418 |
+
act_layer=act_layer,
|
419 |
+
norm_layer=norm_layer,
|
420 |
+
scale_cosine_attn=scale_cosine_attn,
|
421 |
+
scale_heads=scale_heads,
|
422 |
+
scale_attn=scale_attn,
|
423 |
+
scale_fc=scale_fc,
|
424 |
+
cross_attn=cross_attn,
|
425 |
+
xattn=xattn)
|
426 |
+
for _ in range(layers)
|
427 |
+
])
|
428 |
+
|
429 |
+
def get_cast_dtype(self) -> torch.dtype:
|
430 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
431 |
+
|
432 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None):
|
433 |
+
if k is None and v is None:
|
434 |
+
k = v = q
|
435 |
+
for r in self.resblocks:
|
436 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
437 |
+
q = checkpoint(r, q, k, v, attn_mask)
|
438 |
+
else:
|
439 |
+
q = r(q, k, v, attn_mask=attn_mask)
|
440 |
+
return q
|
441 |
+
|
442 |
+
|
443 |
+
class ResidualAttentionBlock(nn.Module):
|
444 |
+
def __init__(
|
445 |
+
self,
|
446 |
+
d_model: int,
|
447 |
+
n_head: int,
|
448 |
+
mlp_ratio: float = 4.0,
|
449 |
+
ls_init_value: float = None,
|
450 |
+
act_layer: Callable = nn.GELU,
|
451 |
+
norm_layer: Callable = LayerNorm,
|
452 |
+
xattn: bool = False,
|
453 |
+
):
|
454 |
+
super().__init__()
|
455 |
+
|
456 |
+
self.ln_1 = norm_layer(d_model)
|
457 |
+
if xattn:
|
458 |
+
self.attn = Attention(d_model, n_head, xattn=True)
|
459 |
+
else:
|
460 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
461 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
462 |
+
|
463 |
+
self.ln_2 = norm_layer(d_model)
|
464 |
+
mlp_width = int(d_model * mlp_ratio)
|
465 |
+
self.mlp = nn.Sequential(OrderedDict([
|
466 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
467 |
+
("gelu", act_layer()),
|
468 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
469 |
+
]))
|
470 |
+
|
471 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
472 |
+
self.xattn = xattn
|
473 |
+
|
474 |
+
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
475 |
+
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
|
476 |
+
if self.xattn:
|
477 |
+
return self.attn(x, attn_mask=attn_mask)
|
478 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
479 |
+
|
480 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
481 |
+
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
|
482 |
+
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
483 |
+
return x
|
484 |
+
|
485 |
+
class Transformer(nn.Module):
|
486 |
+
def __init__(
|
487 |
+
self,
|
488 |
+
width: int,
|
489 |
+
layers: int,
|
490 |
+
heads: int,
|
491 |
+
mlp_ratio: float = 4.0,
|
492 |
+
ls_init_value: float = None,
|
493 |
+
act_layer: Callable = nn.GELU,
|
494 |
+
norm_layer: Callable = LayerNorm,
|
495 |
+
xattn: bool = False,
|
496 |
+
):
|
497 |
+
super().__init__()
|
498 |
+
self.width = width
|
499 |
+
self.layers = layers
|
500 |
+
self.grad_checkpointing = False
|
501 |
+
|
502 |
+
self.resblocks = nn.ModuleList([
|
503 |
+
ResidualAttentionBlock(
|
504 |
+
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn)
|
505 |
+
for _ in range(layers)
|
506 |
+
])
|
507 |
+
|
508 |
+
def get_cast_dtype(self) -> torch.dtype:
|
509 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
510 |
+
|
511 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
512 |
+
for r in self.resblocks:
|
513 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
514 |
+
x = checkpoint(r, x, attn_mask)
|
515 |
+
else:
|
516 |
+
x = r(x, attn_mask=attn_mask)
|
517 |
+
return x
|
518 |
+
|
519 |
+
|
520 |
+
class VisionTransformer(nn.Module):
|
521 |
+
def __init__(
|
522 |
+
self,
|
523 |
+
image_size: int,
|
524 |
+
patch_size: int,
|
525 |
+
width: int,
|
526 |
+
layers: int,
|
527 |
+
heads: int,
|
528 |
+
mlp_ratio: float,
|
529 |
+
ls_init_value: float = None,
|
530 |
+
patch_dropout: float = 0.,
|
531 |
+
global_average_pool: bool = False,
|
532 |
+
output_dim: int = 512,
|
533 |
+
act_layer: Callable = nn.GELU,
|
534 |
+
norm_layer: Callable = LayerNorm,
|
535 |
+
xattn: bool = False,
|
536 |
+
):
|
537 |
+
super().__init__()
|
538 |
+
self.image_size = to_2tuple(image_size)
|
539 |
+
self.patch_size = to_2tuple(patch_size)
|
540 |
+
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
|
541 |
+
self.output_dim = output_dim
|
542 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
543 |
+
|
544 |
+
scale = width ** -0.5
|
545 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
546 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
547 |
+
|
548 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
549 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
550 |
+
self.ln_pre = norm_layer(width)
|
551 |
+
|
552 |
+
self.transformer = Transformer(
|
553 |
+
width,
|
554 |
+
layers,
|
555 |
+
heads,
|
556 |
+
mlp_ratio,
|
557 |
+
ls_init_value=ls_init_value,
|
558 |
+
act_layer=act_layer,
|
559 |
+
norm_layer=norm_layer,
|
560 |
+
xattn=xattn
|
561 |
+
)
|
562 |
+
|
563 |
+
self.global_average_pool = global_average_pool
|
564 |
+
self.ln_post = norm_layer(width)
|
565 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
566 |
+
|
567 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
568 |
+
for param in self.parameters():
|
569 |
+
param.requires_grad = False
|
570 |
+
|
571 |
+
if unlocked_groups != 0:
|
572 |
+
groups = [
|
573 |
+
[
|
574 |
+
self.conv1,
|
575 |
+
self.class_embedding,
|
576 |
+
self.positional_embedding,
|
577 |
+
self.ln_pre,
|
578 |
+
],
|
579 |
+
*self.transformer.resblocks[:-1],
|
580 |
+
[
|
581 |
+
self.transformer.resblocks[-1],
|
582 |
+
self.ln_post,
|
583 |
+
],
|
584 |
+
self.proj,
|
585 |
+
]
|
586 |
+
|
587 |
+
def _unlock(x):
|
588 |
+
if isinstance(x, Sequence):
|
589 |
+
for g in x:
|
590 |
+
_unlock(g)
|
591 |
+
else:
|
592 |
+
if isinstance(x, torch.nn.Parameter):
|
593 |
+
x.requires_grad = True
|
594 |
+
else:
|
595 |
+
for p in x.parameters():
|
596 |
+
p.requires_grad = True
|
597 |
+
|
598 |
+
_unlock(groups[-unlocked_groups:])
|
599 |
+
|
600 |
+
def get_num_layers(self):
|
601 |
+
return self.transformer.layers
|
602 |
+
|
603 |
+
@torch.jit.ignore
|
604 |
+
def set_grad_checkpointing(self, enable=True):
|
605 |
+
self.transformer.grad_checkpointing = enable
|
606 |
+
|
607 |
+
@torch.jit.ignore
|
608 |
+
def no_weight_decay(self):
|
609 |
+
return {'positional_embedding', 'class_embedding'}
|
610 |
+
|
611 |
+
def forward(self, x: torch.Tensor, return_all_features: bool=False):
|
612 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
613 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
614 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
615 |
+
x = torch.cat(
|
616 |
+
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
617 |
+
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
618 |
+
x = x + self.positional_embedding.to(x.dtype)
|
619 |
+
|
620 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
621 |
+
x = self.patch_dropout(x)
|
622 |
+
x = self.ln_pre(x)
|
623 |
+
|
624 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
625 |
+
x = self.transformer(x)
|
626 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
627 |
+
|
628 |
+
if not return_all_features:
|
629 |
+
if self.global_average_pool:
|
630 |
+
x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1)
|
631 |
+
else:
|
632 |
+
x = x[:, 0]
|
633 |
+
|
634 |
+
x = self.ln_post(x)
|
635 |
+
|
636 |
+
if self.proj is not None:
|
637 |
+
x = x @ self.proj
|
638 |
+
|
639 |
+
return x
|
640 |
+
|
641 |
+
|
642 |
+
class TextTransformer(nn.Module):
|
643 |
+
def __init__(
|
644 |
+
self,
|
645 |
+
context_length: int = 77,
|
646 |
+
vocab_size: int = 49408,
|
647 |
+
width: int = 512,
|
648 |
+
heads: int = 8,
|
649 |
+
layers: int = 12,
|
650 |
+
ls_init_value: float = None,
|
651 |
+
output_dim: int = 512,
|
652 |
+
act_layer: Callable = nn.GELU,
|
653 |
+
norm_layer: Callable = LayerNorm,
|
654 |
+
xattn: bool= False,
|
655 |
+
attn_mask: bool = True
|
656 |
+
):
|
657 |
+
super().__init__()
|
658 |
+
self.context_length = context_length
|
659 |
+
self.vocab_size = vocab_size
|
660 |
+
self.width = width
|
661 |
+
self.output_dim = output_dim
|
662 |
+
|
663 |
+
self.token_embedding = nn.Embedding(vocab_size, width)
|
664 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
|
665 |
+
self.transformer = Transformer(
|
666 |
+
width=width,
|
667 |
+
layers=layers,
|
668 |
+
heads=heads,
|
669 |
+
ls_init_value=ls_init_value,
|
670 |
+
act_layer=act_layer,
|
671 |
+
norm_layer=norm_layer,
|
672 |
+
xattn=xattn
|
673 |
+
)
|
674 |
+
|
675 |
+
self.xattn = xattn
|
676 |
+
self.ln_final = norm_layer(width)
|
677 |
+
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
678 |
+
|
679 |
+
if attn_mask:
|
680 |
+
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
|
681 |
+
else:
|
682 |
+
self.attn_mask = None
|
683 |
+
|
684 |
+
self.init_parameters()
|
685 |
+
|
686 |
+
def init_parameters(self):
|
687 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
688 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
689 |
+
|
690 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
691 |
+
attn_std = self.transformer.width ** -0.5
|
692 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
693 |
+
for block in self.transformer.resblocks:
|
694 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
695 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
696 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
697 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
698 |
+
|
699 |
+
if self.text_projection is not None:
|
700 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
701 |
+
|
702 |
+
@torch.jit.ignore
|
703 |
+
def set_grad_checkpointing(self, enable=True):
|
704 |
+
self.transformer.grad_checkpointing = enable
|
705 |
+
|
706 |
+
@torch.jit.ignore
|
707 |
+
def no_weight_decay(self):
|
708 |
+
# return {'positional_embedding', 'token_embedding'}
|
709 |
+
return {'positional_embedding'}
|
710 |
+
|
711 |
+
def get_num_layers(self):
|
712 |
+
return self.transformer.layers
|
713 |
+
|
714 |
+
def build_attention_mask(self):
|
715 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
716 |
+
# pytorch uses additive attention mask; fill with -inf
|
717 |
+
mask = torch.empty(self.context_length, self.context_length)
|
718 |
+
mask.fill_(float("-inf"))
|
719 |
+
mask.triu_(1) # zero out the lower diagonal
|
720 |
+
return mask
|
721 |
+
|
722 |
+
def forward(self, text, return_all_features: bool=False):
|
723 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
724 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
725 |
+
|
726 |
+
x = x + self.positional_embedding.to(cast_dtype)
|
727 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
728 |
+
x = self.transformer(x, attn_mask=self.attn_mask)
|
729 |
+
# x = self.transformer(x) # no attention mask is applied
|
730 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
731 |
+
x = self.ln_final(x)
|
732 |
+
|
733 |
+
if not return_all_features:
|
734 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
735 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
736 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
737 |
+
return x
|
eva_clip/utils.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import repeat
|
2 |
+
import collections.abc
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn as nn
|
9 |
+
from torchvision.ops.misc import FrozenBatchNorm2d
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
# open CLIP
|
13 |
+
def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
14 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
15 |
+
old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
16 |
+
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
17 |
+
return
|
18 |
+
grid_size = to_2tuple(model.visual.grid_size)
|
19 |
+
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
20 |
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
21 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
22 |
+
return
|
23 |
+
|
24 |
+
if extra_tokens:
|
25 |
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
26 |
+
else:
|
27 |
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
28 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
29 |
+
|
30 |
+
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
31 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
32 |
+
pos_emb_img = F.interpolate(
|
33 |
+
pos_emb_img,
|
34 |
+
size=grid_size,
|
35 |
+
mode=interpolation,
|
36 |
+
align_corners=True,
|
37 |
+
)
|
38 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
39 |
+
if pos_emb_tok is not None:
|
40 |
+
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
41 |
+
else:
|
42 |
+
new_pos_embed = pos_emb_img
|
43 |
+
state_dict['visual.positional_embedding'] = new_pos_embed
|
44 |
+
|
45 |
+
|
46 |
+
def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
47 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
48 |
+
old_pos_embed = state_dict.get('positional_embedding', None)
|
49 |
+
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
50 |
+
return
|
51 |
+
grid_size = to_2tuple(model.visual.grid_size)
|
52 |
+
extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
53 |
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
54 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
55 |
+
return
|
56 |
+
|
57 |
+
if extra_tokens:
|
58 |
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
59 |
+
else:
|
60 |
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
61 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
62 |
+
|
63 |
+
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
64 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
65 |
+
pos_emb_img = F.interpolate(
|
66 |
+
pos_emb_img,
|
67 |
+
size=grid_size,
|
68 |
+
mode=interpolation,
|
69 |
+
align_corners=True,
|
70 |
+
)
|
71 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
72 |
+
if pos_emb_tok is not None:
|
73 |
+
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
74 |
+
else:
|
75 |
+
new_pos_embed = pos_emb_img
|
76 |
+
state_dict['positional_embedding'] = new_pos_embed
|
77 |
+
|
78 |
+
def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
79 |
+
all_keys = list(state_dict.keys())
|
80 |
+
# interpolate position embedding
|
81 |
+
if 'visual.pos_embed' in state_dict:
|
82 |
+
pos_embed_checkpoint = state_dict['visual.pos_embed']
|
83 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
84 |
+
num_patches = model.visual.patch_embed.num_patches
|
85 |
+
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
86 |
+
# height (== width) for the checkpoint position embedding
|
87 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
88 |
+
# height (== width) for the new position embedding
|
89 |
+
new_size = int(num_patches ** 0.5)
|
90 |
+
# class_token and dist_token are kept unchanged
|
91 |
+
if orig_size != new_size:
|
92 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
93 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
94 |
+
# only the position tokens are interpolated
|
95 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
96 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
97 |
+
pos_tokens = torch.nn.functional.interpolate(
|
98 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
99 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
100 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
101 |
+
state_dict['visual.pos_embed'] = new_pos_embed
|
102 |
+
|
103 |
+
patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
|
104 |
+
patch_size = model.visual.patch_embed.patch_size
|
105 |
+
state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
106 |
+
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
107 |
+
|
108 |
+
|
109 |
+
def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
110 |
+
all_keys = list(state_dict.keys())
|
111 |
+
# interpolate position embedding
|
112 |
+
if 'pos_embed' in state_dict:
|
113 |
+
pos_embed_checkpoint = state_dict['pos_embed']
|
114 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
115 |
+
num_patches = model.visual.patch_embed.num_patches
|
116 |
+
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
117 |
+
# height (== width) for the checkpoint position embedding
|
118 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
119 |
+
# height (== width) for the new position embedding
|
120 |
+
new_size = int(num_patches ** 0.5)
|
121 |
+
# class_token and dist_token are kept unchanged
|
122 |
+
if orig_size != new_size:
|
123 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
124 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
125 |
+
# only the position tokens are interpolated
|
126 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
127 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
128 |
+
pos_tokens = torch.nn.functional.interpolate(
|
129 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
130 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
131 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
132 |
+
state_dict['pos_embed'] = new_pos_embed
|
133 |
+
|
134 |
+
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
135 |
+
patch_size = model.visual.patch_embed.patch_size
|
136 |
+
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
137 |
+
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
138 |
+
|
139 |
+
|
140 |
+
def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
|
141 |
+
all_keys = list(state_dict.keys())
|
142 |
+
for key in all_keys:
|
143 |
+
if "relative_position_index" in key:
|
144 |
+
state_dict.pop(key)
|
145 |
+
|
146 |
+
if "relative_position_bias_table" in key:
|
147 |
+
rel_pos_bias = state_dict[key]
|
148 |
+
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
149 |
+
dst_num_pos, _ = model.visual.state_dict()[key].size()
|
150 |
+
dst_patch_shape = model.visual.patch_embed.patch_shape
|
151 |
+
if dst_patch_shape[0] != dst_patch_shape[1]:
|
152 |
+
raise NotImplementedError()
|
153 |
+
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
|
154 |
+
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
|
155 |
+
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
|
156 |
+
if src_size != dst_size:
|
157 |
+
print("Position interpolate for %s from %dx%d to %dx%d" % (
|
158 |
+
key, src_size, src_size, dst_size, dst_size))
|
159 |
+
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
160 |
+
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
161 |
+
|
162 |
+
def geometric_progression(a, r, n):
|
163 |
+
return a * (1.0 - r ** n) / (1.0 - r)
|
164 |
+
|
165 |
+
left, right = 1.01, 1.5
|
166 |
+
while right - left > 1e-6:
|
167 |
+
q = (left + right) / 2.0
|
168 |
+
gp = geometric_progression(1, q, src_size // 2)
|
169 |
+
if gp > dst_size // 2:
|
170 |
+
right = q
|
171 |
+
else:
|
172 |
+
left = q
|
173 |
+
|
174 |
+
# if q > 1.090307:
|
175 |
+
# q = 1.090307
|
176 |
+
|
177 |
+
dis = []
|
178 |
+
cur = 1
|
179 |
+
for i in range(src_size // 2):
|
180 |
+
dis.append(cur)
|
181 |
+
cur += q ** (i + 1)
|
182 |
+
|
183 |
+
r_ids = [-_ for _ in reversed(dis)]
|
184 |
+
|
185 |
+
x = r_ids + [0] + dis
|
186 |
+
y = r_ids + [0] + dis
|
187 |
+
|
188 |
+
t = dst_size // 2.0
|
189 |
+
dx = np.arange(-t, t + 0.1, 1.0)
|
190 |
+
dy = np.arange(-t, t + 0.1, 1.0)
|
191 |
+
|
192 |
+
print("Original positions = %s" % str(x))
|
193 |
+
print("Target positions = %s" % str(dx))
|
194 |
+
|
195 |
+
all_rel_pos_bias = []
|
196 |
+
|
197 |
+
for i in range(num_attn_heads):
|
198 |
+
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
199 |
+
f = F.interpolate.interp2d(x, y, z, kind='cubic')
|
200 |
+
all_rel_pos_bias.append(
|
201 |
+
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
202 |
+
|
203 |
+
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
204 |
+
|
205 |
+
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
206 |
+
state_dict[key] = new_rel_pos_bias
|
207 |
+
|
208 |
+
# interpolate position embedding
|
209 |
+
if 'pos_embed' in state_dict:
|
210 |
+
pos_embed_checkpoint = state_dict['pos_embed']
|
211 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
212 |
+
num_patches = model.visual.patch_embed.num_patches
|
213 |
+
num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
|
214 |
+
# height (== width) for the checkpoint position embedding
|
215 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
216 |
+
# height (== width) for the new position embedding
|
217 |
+
new_size = int(num_patches ** 0.5)
|
218 |
+
# class_token and dist_token are kept unchanged
|
219 |
+
if orig_size != new_size:
|
220 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
221 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
222 |
+
# only the position tokens are interpolated
|
223 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
224 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
225 |
+
pos_tokens = torch.nn.functional.interpolate(
|
226 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
227 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
228 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
229 |
+
state_dict['pos_embed'] = new_pos_embed
|
230 |
+
|
231 |
+
patch_embed_proj = state_dict['patch_embed.proj.weight']
|
232 |
+
patch_size = model.visual.patch_embed.patch_size
|
233 |
+
state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
|
234 |
+
patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
|
235 |
+
|
236 |
+
|
237 |
+
def freeze_batch_norm_2d(module, module_match={}, name=''):
|
238 |
+
"""
|
239 |
+
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
|
240 |
+
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
|
241 |
+
returned. Otherwise, the module is walked recursively and submodules are converted in place.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
module (torch.nn.Module): Any PyTorch module.
|
245 |
+
module_match (dict): Dictionary of full module names to freeze (all if empty)
|
246 |
+
name (str): Full module name (prefix)
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
torch.nn.Module: Resulting module
|
250 |
+
|
251 |
+
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
|
252 |
+
"""
|
253 |
+
res = module
|
254 |
+
is_match = True
|
255 |
+
if module_match:
|
256 |
+
is_match = name in module_match
|
257 |
+
if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
|
258 |
+
res = FrozenBatchNorm2d(module.num_features)
|
259 |
+
res.num_features = module.num_features
|
260 |
+
res.affine = module.affine
|
261 |
+
if module.affine:
|
262 |
+
res.weight.data = module.weight.data.clone().detach()
|
263 |
+
res.bias.data = module.bias.data.clone().detach()
|
264 |
+
res.running_mean.data = module.running_mean.data
|
265 |
+
res.running_var.data = module.running_var.data
|
266 |
+
res.eps = module.eps
|
267 |
+
else:
|
268 |
+
for child_name, child in module.named_children():
|
269 |
+
full_child_name = '.'.join([name, child_name]) if name else child_name
|
270 |
+
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
|
271 |
+
if new_child is not child:
|
272 |
+
res.add_module(child_name, new_child)
|
273 |
+
return res
|
274 |
+
|
275 |
+
|
276 |
+
# From PyTorch internals
|
277 |
+
def _ntuple(n):
|
278 |
+
def parse(x):
|
279 |
+
if isinstance(x, collections.abc.Iterable):
|
280 |
+
return x
|
281 |
+
return tuple(repeat(x, n))
|
282 |
+
return parse
|
283 |
+
|
284 |
+
|
285 |
+
to_1tuple = _ntuple(1)
|
286 |
+
to_2tuple = _ntuple(2)
|
287 |
+
to_3tuple = _ntuple(3)
|
288 |
+
to_4tuple = _ntuple(4)
|
289 |
+
to_ntuple = lambda n, x: _ntuple(n)(x)
|
290 |
+
|
291 |
+
|
292 |
+
def is_logging(args):
|
293 |
+
def is_global_master(args):
|
294 |
+
return args.rank == 0
|
295 |
+
|
296 |
+
def is_local_master(args):
|
297 |
+
return args.local_rank == 0
|
298 |
+
|
299 |
+
def is_master(args, local=False):
|
300 |
+
return is_local_master(args) if local else is_global_master(args)
|
301 |
+
return is_master
|
302 |
+
|
303 |
+
|
304 |
+
class AllGather(torch.autograd.Function):
|
305 |
+
"""An autograd function that performs allgather on a tensor.
|
306 |
+
Performs all_gather operation on the provided tensors.
|
307 |
+
*** Warning ***: torch.distributed.all_gather has no gradient.
|
308 |
+
"""
|
309 |
+
|
310 |
+
@staticmethod
|
311 |
+
def forward(ctx, tensor, rank, world_size):
|
312 |
+
tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
|
313 |
+
torch.distributed.all_gather(tensors_gather, tensor)
|
314 |
+
ctx.rank = rank
|
315 |
+
ctx.batch_size = tensor.shape[0]
|
316 |
+
return torch.cat(tensors_gather, 0)
|
317 |
+
|
318 |
+
@staticmethod
|
319 |
+
def backward(ctx, grad_output):
|
320 |
+
return (
|
321 |
+
grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
|
322 |
+
None,
|
323 |
+
None
|
324 |
+
)
|
325 |
+
|
326 |
+
allgather = AllGather.apply
|
example_inputs/unsplash/baruk-granda-cfLL_jHQ-Iw-unsplash.jpg
ADDED
![]() |
Git LFS Details
|
example_inputs/unsplash/gus-tu-njana-Mf4MN7MZqcE-unsplash.jpg
ADDED
![]() |
Git LFS Details
|
example_inputs/unsplash/lhon-karwan-11tbHtK5STE-unsplash.jpg
ADDED
![]() |
Git LFS Details
|
example_inputs/unsplash/masoud-razeghi--qsrZhXPius-unsplash.jpg
ADDED
![]() |
Git LFS Details
|
example_inputs/unsplash/rahmat-alizada-7PwFKOgyoKo-unsplash.jpg
ADDED
![]() |
Git LFS Details
|
flux/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
from ._version import version as __version__ # type: ignore
|
3 |
+
from ._version import version_tuple
|
4 |
+
except ImportError:
|
5 |
+
__version__ = "unknown (no version information available)"
|
6 |
+
version_tuple = (0, 0, "unknown", "noinfo")
|
7 |
+
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
PACKAGE = __package__.replace("_", "-")
|
11 |
+
PACKAGE_ROOT = Path(__file__).parent
|
flux/image_utils.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw, ImageFont
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import glob
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
def read_images_in_path(path, size = (512,512)):
|
8 |
+
image_paths = []
|
9 |
+
for filename in os.listdir(path):
|
10 |
+
if filename.endswith(".png") or filename.endswith(".jpg") or filename.endswith(".jpeg"):
|
11 |
+
image_path = os.path.join(path, filename)
|
12 |
+
image_paths.append(image_path)
|
13 |
+
image_paths = sorted(image_paths)
|
14 |
+
return [Image.open(image_path).convert("RGB").resize(size) for image_path in image_paths]
|
15 |
+
|
16 |
+
def concatenate_images(image_lists, return_list = False):
|
17 |
+
num_rows = len(image_lists[0])
|
18 |
+
num_columns = len(image_lists)
|
19 |
+
image_width = image_lists[0][0].width
|
20 |
+
image_height = image_lists[0][0].height
|
21 |
+
|
22 |
+
grid_width = num_columns * image_width
|
23 |
+
grid_height = num_rows * image_height if not return_list else image_height
|
24 |
+
if not return_list:
|
25 |
+
grid_image = [Image.new('RGB', (grid_width, grid_height))]
|
26 |
+
else:
|
27 |
+
grid_image = [Image.new('RGB', (grid_width, grid_height)) for i in range(num_rows)]
|
28 |
+
|
29 |
+
for i in range(num_rows):
|
30 |
+
row_index = i if return_list else 0
|
31 |
+
for j in range(num_columns):
|
32 |
+
image = image_lists[j][i]
|
33 |
+
x_offset = j * image_width
|
34 |
+
y_offset = i * image_height if not return_list else 0
|
35 |
+
grid_image[row_index].paste(image, (x_offset, y_offset))
|
36 |
+
|
37 |
+
return grid_image if return_list else grid_image[0]
|
38 |
+
|
39 |
+
def concatenate_images_single(image_lists):
|
40 |
+
num_columns = len(image_lists)
|
41 |
+
image_width = image_lists[0].width
|
42 |
+
image_height = image_lists[0].height
|
43 |
+
|
44 |
+
grid_width = num_columns * image_width
|
45 |
+
grid_height = image_height
|
46 |
+
grid_image = Image.new('RGB', (grid_width, grid_height))
|
47 |
+
|
48 |
+
for j in range(num_columns):
|
49 |
+
image = image_lists[j]
|
50 |
+
x_offset = j * image_width
|
51 |
+
y_offset = 0
|
52 |
+
grid_image.paste(image, (x_offset, y_offset))
|
53 |
+
|
54 |
+
return grid_image
|
55 |
+
|
56 |
+
def get_captions_for_images(images, device):
|
57 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
58 |
+
|
59 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
60 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
61 |
+
"Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16
|
62 |
+
) # doctest: +IGNORE_RESULT
|
63 |
+
|
64 |
+
res = []
|
65 |
+
|
66 |
+
for image in images:
|
67 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
68 |
+
|
69 |
+
generated_ids = model.generate(**inputs)
|
70 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
71 |
+
res.append(generated_text)
|
72 |
+
|
73 |
+
del processor
|
74 |
+
del model
|
75 |
+
|
76 |
+
return res
|
77 |
+
|
78 |
+
def find_and_plot_images(directory, output_file, recursive=True, figsize=(15, 15), image_formats=("*.png", "*.jpg", "*.jpeg", "*.bmp", "*.tiff")):
|
79 |
+
"""
|
80 |
+
Finds all images in the specified directory (optionally recursively)
|
81 |
+
and saves them in a single figure with their filenames.
|
82 |
+
|
83 |
+
Parameters:
|
84 |
+
directory (str): Path to the directory.
|
85 |
+
output_file (str): Path to save the resulting figure (e.g., 'output.png').
|
86 |
+
recursive (bool): Whether to search directories recursively.
|
87 |
+
figsize (tuple): Size of the resulting figure.
|
88 |
+
image_formats (tuple): Image file formats to look for.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
None
|
92 |
+
"""
|
93 |
+
# Gather all image file paths
|
94 |
+
pattern = "**/" if recursive else ""
|
95 |
+
images = []
|
96 |
+
for fmt in image_formats:
|
97 |
+
images.extend(glob.glob(os.path.join(directory, pattern + fmt), recursive=recursive))
|
98 |
+
|
99 |
+
images = [image for image in images if "noise.jpg" not in image and "results.jpg" not in image] # Filter out noise and result images
|
100 |
+
# move "original" to the front, followed by "reconstruction" and then the rest
|
101 |
+
images = sorted(
|
102 |
+
images,
|
103 |
+
key=lambda x: (not x.endswith("original.jpg"), not x.endswith("reconstruction.jpg"), x)
|
104 |
+
)
|
105 |
+
|
106 |
+
if not images:
|
107 |
+
print("No images found!")
|
108 |
+
return
|
109 |
+
|
110 |
+
# Create a figure
|
111 |
+
num_images = len(images)
|
112 |
+
cols = num_images # Max 5 images per row
|
113 |
+
rows = (num_images + cols - 1) // cols # Calculate number of rows
|
114 |
+
fig, axs = plt.subplots(rows, cols, figsize=figsize)
|
115 |
+
axs = axs.flatten() if num_images > 1 else [axs] # Flatten axes for single image case
|
116 |
+
|
117 |
+
for i, image_path in enumerate(images):
|
118 |
+
# Open and plot image
|
119 |
+
img = Image.open(image_path)
|
120 |
+
axs[i].imshow(img)
|
121 |
+
axs[i].axis('off') # Remove axes
|
122 |
+
axs[i].set_title(os.path.basename(image_path), fontsize=8) # Add filename
|
123 |
+
|
124 |
+
# Hide any remaining empty axes
|
125 |
+
for j in range(i + 1, len(axs)):
|
126 |
+
axs[j].axis('off')
|
127 |
+
|
128 |
+
plt.tight_layout()
|
129 |
+
plt.savefig(output_file, bbox_inches='tight', dpi=300) # Save the figure to the file
|
130 |
+
plt.close(fig) # Close the figure to free up memory
|
131 |
+
print(f"Figure saved to {output_file}")
|
132 |
+
|
133 |
+
|
134 |
+
def add_label_to_image(image, label):
|
135 |
+
"""
|
136 |
+
Adds a label to the lower-right corner of an image.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
image (PIL.Image): Image to add the label to.
|
140 |
+
label (str): Text to add as a label.
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
PIL.Image: Image with the added label.
|
144 |
+
"""
|
145 |
+
# Create a drawing context
|
146 |
+
draw = ImageDraw.Draw(image)
|
147 |
+
|
148 |
+
|
149 |
+
# Create a drawing context
|
150 |
+
draw = ImageDraw.Draw(image)
|
151 |
+
|
152 |
+
# Define font and size
|
153 |
+
font_size = int(min(image.size) * 0.05) # Adjust font size based on image dimensions
|
154 |
+
try:
|
155 |
+
font = ImageFont.truetype("fonts/arial.ttf", font_size) # Replace with a font path if needed
|
156 |
+
except IOError:
|
157 |
+
font = ImageFont.load_default() # Fallback to default font if arial.ttf is not found
|
158 |
+
|
159 |
+
# Measure text size using textbbox
|
160 |
+
text_bbox = draw.textbbox((0, 0), label, font=font) # (left, top, right, bottom)
|
161 |
+
text_width = text_bbox[2] - text_bbox[0]
|
162 |
+
text_height = text_bbox[3] - text_bbox[1]
|
163 |
+
|
164 |
+
# Position the text in the lower-right corner with some padding
|
165 |
+
padding = 10
|
166 |
+
position = (image.width - text_width - padding, image.height - text_height - padding)
|
167 |
+
|
168 |
+
# Add a semi-transparent background for the label
|
169 |
+
draw.rectangle(
|
170 |
+
[
|
171 |
+
(position[0] - padding, position[1] - padding),
|
172 |
+
(position[0] + text_width + padding, position[1] + text_height + padding)
|
173 |
+
],
|
174 |
+
fill=(0, 0, 0, 150) # Black with transparency
|
175 |
+
)
|
176 |
+
|
177 |
+
# Draw the label
|
178 |
+
draw.text(position, label, fill="white", font=font)
|
179 |
+
|
180 |
+
return image
|
181 |
+
|
182 |
+
def crop_center_square_and_resize(img, size, output_path=None):
|
183 |
+
"""
|
184 |
+
Crops the center of an image to make it square.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
img (PIL.Image): Image to crop.
|
188 |
+
output_path (str, optional): Path to save the cropped image. If None, the cropped image is not saved.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
Image: The cropped square image.
|
192 |
+
"""
|
193 |
+
width, height = img.size
|
194 |
+
# Determine the shorter side
|
195 |
+
side_length = min(width, height)
|
196 |
+
# Calculate the cropping box
|
197 |
+
left = (width - side_length) // 2
|
198 |
+
top = (height - side_length) // 2
|
199 |
+
right = left + side_length
|
200 |
+
bottom = top + side_length
|
201 |
+
# Crop the image
|
202 |
+
cropped_img = img.crop((left, top, right, bottom))
|
203 |
+
# Resize the image
|
204 |
+
cropped_img = cropped_img.resize(size)
|
205 |
+
|
206 |
+
# Save the cropped image if output path is specified
|
207 |
+
if output_path:
|
208 |
+
cropped_img.save(output_path)
|
209 |
+
|
210 |
+
return cropped_img
|
flux/math.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
from torch import Tensor
|
4 |
+
|
5 |
+
|
6 |
+
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
7 |
+
if pe is not None:
|
8 |
+
q, k = apply_rope(q, k, pe)
|
9 |
+
|
10 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
11 |
+
x = rearrange(x, "B H L D -> B L (H D)")
|
12 |
+
|
13 |
+
return x
|
14 |
+
|
15 |
+
|
16 |
+
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
17 |
+
assert dim % 2 == 0
|
18 |
+
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
19 |
+
omega = 1.0 / (theta**scale)
|
20 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
21 |
+
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
22 |
+
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
23 |
+
return out.float()
|
24 |
+
|
25 |
+
|
26 |
+
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
27 |
+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
28 |
+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
29 |
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
30 |
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
31 |
+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
flux/model.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor, nn
|
5 |
+
|
6 |
+
from flux.modules.layers import (
|
7 |
+
DoubleStreamBlock,
|
8 |
+
EmbedND,
|
9 |
+
LastLayer,
|
10 |
+
MLPEmbedder,
|
11 |
+
SingleStreamBlock,
|
12 |
+
timestep_embedding,
|
13 |
+
)
|
14 |
+
|
15 |
+
DEVICE = torch.device("cuda")
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class FluxParams:
|
19 |
+
in_channels: int
|
20 |
+
vec_in_dim: int
|
21 |
+
context_in_dim: int
|
22 |
+
hidden_size: int
|
23 |
+
mlp_ratio: float
|
24 |
+
num_heads: int
|
25 |
+
depth: int
|
26 |
+
depth_single_blocks: int
|
27 |
+
axes_dim: list[int]
|
28 |
+
theta: int
|
29 |
+
qkv_bias: bool
|
30 |
+
guidance_embed: bool
|
31 |
+
|
32 |
+
|
33 |
+
class Flux(nn.Module):
|
34 |
+
"""
|
35 |
+
Transformer model for flow matching on sequences.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, params: FluxParams):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.params = params
|
42 |
+
self.in_channels = params.in_channels
|
43 |
+
self.out_channels = self.in_channels
|
44 |
+
if params.hidden_size % params.num_heads != 0:
|
45 |
+
raise ValueError(
|
46 |
+
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
47 |
+
)
|
48 |
+
pe_dim = params.hidden_size // params.num_heads
|
49 |
+
if sum(params.axes_dim) != pe_dim:
|
50 |
+
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
51 |
+
self.hidden_size = params.hidden_size
|
52 |
+
self.num_heads = params.num_heads
|
53 |
+
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
54 |
+
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
55 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
56 |
+
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
57 |
+
self.guidance_in = (
|
58 |
+
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
59 |
+
)
|
60 |
+
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
61 |
+
|
62 |
+
self.double_blocks = nn.ModuleList(
|
63 |
+
[
|
64 |
+
DoubleStreamBlock(
|
65 |
+
self.hidden_size,
|
66 |
+
self.num_heads,
|
67 |
+
mlp_ratio=params.mlp_ratio,
|
68 |
+
qkv_bias=params.qkv_bias,
|
69 |
+
).to(torch.bfloat16)
|
70 |
+
for _ in range(params.depth)
|
71 |
+
]
|
72 |
+
)
|
73 |
+
|
74 |
+
self.single_blocks = nn.ModuleList(
|
75 |
+
[
|
76 |
+
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio).to(torch.bfloat16)
|
77 |
+
for _ in range(params.depth_single_blocks)
|
78 |
+
]
|
79 |
+
)
|
80 |
+
|
81 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
82 |
+
|
83 |
+
self.pulid_ca = None
|
84 |
+
self.pulid_double_interval = 2
|
85 |
+
self.pulid_single_interval = 4
|
86 |
+
|
87 |
+
def forward(
|
88 |
+
self,
|
89 |
+
img: Tensor,
|
90 |
+
img_ids: Tensor,
|
91 |
+
txt: Tensor,
|
92 |
+
txt_ids: Tensor,
|
93 |
+
timesteps: Tensor,
|
94 |
+
y: Tensor,
|
95 |
+
guidance: Tensor = None,
|
96 |
+
id: Tensor = None,
|
97 |
+
id_weight: float = 1.0,
|
98 |
+
aggressive_offload: bool = False,
|
99 |
+
) -> Tensor:
|
100 |
+
if img.ndim != 3 or txt.ndim != 3:
|
101 |
+
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
102 |
+
|
103 |
+
# running on sequences img
|
104 |
+
img = self.img_in(img)
|
105 |
+
vec = self.time_in(timestep_embedding(timesteps, 256))
|
106 |
+
if self.params.guidance_embed:
|
107 |
+
if guidance is None:
|
108 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
109 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
110 |
+
vec = vec + self.vector_in(y)
|
111 |
+
txt = self.txt_in(txt)
|
112 |
+
|
113 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
114 |
+
pe = self.pe_embedder(ids)
|
115 |
+
|
116 |
+
ca_idx = 0
|
117 |
+
if aggressive_offload:
|
118 |
+
self.double_blocks = self.double_blocks.to(DEVICE)
|
119 |
+
for i, block in enumerate(self.double_blocks):
|
120 |
+
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
121 |
+
|
122 |
+
if i % self.pulid_double_interval == 0 and id is not None:
|
123 |
+
img = img + id_weight * self.pulid_ca[ca_idx](id, img)
|
124 |
+
ca_idx += 1
|
125 |
+
if aggressive_offload:
|
126 |
+
self.double_blocks.cpu()
|
127 |
+
|
128 |
+
img = torch.cat((txt, img), 1)
|
129 |
+
if aggressive_offload:
|
130 |
+
# put half of the single blcoks to gpu
|
131 |
+
for i in range(len(self.single_blocks) // 2):
|
132 |
+
self.single_blocks[i] = self.single_blocks[i].to(DEVICE)
|
133 |
+
for i, block in enumerate(self.single_blocks):
|
134 |
+
if aggressive_offload and i == len(self.single_blocks)//2:
|
135 |
+
# put first half of the single blcoks to cpu and last half to gpu
|
136 |
+
for j in range(len(self.single_blocks) // 2):
|
137 |
+
self.single_blocks[j].cpu()
|
138 |
+
for j in range(len(self.single_blocks) // 2, len(self.single_blocks)):
|
139 |
+
self.single_blocks[j] = self.single_blocks[j].to(DEVICE)
|
140 |
+
x = block(img, vec=vec, pe=pe)
|
141 |
+
real_img, txt = x[:, txt.shape[1]:, ...], x[:, :txt.shape[1], ...]
|
142 |
+
|
143 |
+
if i % self.pulid_single_interval == 0 and id is not None:
|
144 |
+
real_img = real_img + id_weight * self.pulid_ca[ca_idx](id, real_img)
|
145 |
+
ca_idx += 1
|
146 |
+
|
147 |
+
img = torch.cat((txt, real_img), 1)
|
148 |
+
if aggressive_offload:
|
149 |
+
self.single_blocks.cpu()
|
150 |
+
img = img[:, txt.shape[1] :, ...]
|
151 |
+
|
152 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
153 |
+
return img
|
154 |
+
|
155 |
+
def components_to_gpu(self):
|
156 |
+
# everything but double_blocks, single_blocks
|
157 |
+
self.img_in.to(DEVICE)
|
158 |
+
self.time_in.to(DEVICE)
|
159 |
+
self.guidance_in.to(DEVICE)
|
160 |
+
self.vector_in.to(DEVICE)
|
161 |
+
self.txt_in.to(DEVICE)
|
162 |
+
self.pe_embedder.to(DEVICE)
|
163 |
+
self.final_layer.to(DEVICE)
|
164 |
+
if self.pulid_ca:
|
165 |
+
self.pulid_ca.to(DEVICE)
|
flux/modules/__init__.py
ADDED
File without changes
|
flux/modules/autoencoder.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from einops import rearrange
|
5 |
+
from torch import Tensor, nn
|
6 |
+
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class AutoEncoderParams:
|
10 |
+
resolution: int
|
11 |
+
in_channels: int
|
12 |
+
ch: int
|
13 |
+
out_ch: int
|
14 |
+
ch_mult: list[int]
|
15 |
+
num_res_blocks: int
|
16 |
+
z_channels: int
|
17 |
+
scale_factor: float
|
18 |
+
shift_factor: float
|
19 |
+
|
20 |
+
|
21 |
+
def swish(x: Tensor) -> Tensor:
|
22 |
+
return x * torch.sigmoid(x)
|
23 |
+
|
24 |
+
|
25 |
+
class AttnBlock(nn.Module):
|
26 |
+
def __init__(self, in_channels: int):
|
27 |
+
super().__init__()
|
28 |
+
self.in_channels = in_channels
|
29 |
+
|
30 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
31 |
+
|
32 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
33 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
34 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
35 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
36 |
+
|
37 |
+
def attention(self, h_: Tensor) -> Tensor:
|
38 |
+
h_ = self.norm(h_)
|
39 |
+
q = self.q(h_)
|
40 |
+
k = self.k(h_)
|
41 |
+
v = self.v(h_)
|
42 |
+
|
43 |
+
b, c, h, w = q.shape
|
44 |
+
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
45 |
+
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
46 |
+
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
47 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
48 |
+
|
49 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
50 |
+
|
51 |
+
def forward(self, x: Tensor) -> Tensor:
|
52 |
+
return x + self.proj_out(self.attention(x))
|
53 |
+
|
54 |
+
|
55 |
+
class ResnetBlock(nn.Module):
|
56 |
+
def __init__(self, in_channels: int, out_channels: int):
|
57 |
+
super().__init__()
|
58 |
+
self.in_channels = in_channels
|
59 |
+
out_channels = in_channels if out_channels is None else out_channels
|
60 |
+
self.out_channels = out_channels
|
61 |
+
|
62 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
63 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
64 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
65 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
66 |
+
if self.in_channels != self.out_channels:
|
67 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
h = x
|
71 |
+
h = self.norm1(h)
|
72 |
+
h = swish(h)
|
73 |
+
h = self.conv1(h)
|
74 |
+
|
75 |
+
h = self.norm2(h)
|
76 |
+
h = swish(h)
|
77 |
+
h = self.conv2(h)
|
78 |
+
|
79 |
+
if self.in_channels != self.out_channels:
|
80 |
+
x = self.nin_shortcut(x)
|
81 |
+
|
82 |
+
return x + h
|
83 |
+
|
84 |
+
|
85 |
+
class Downsample(nn.Module):
|
86 |
+
def __init__(self, in_channels: int):
|
87 |
+
super().__init__()
|
88 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
89 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
90 |
+
|
91 |
+
def forward(self, x: Tensor):
|
92 |
+
pad = (0, 1, 0, 1)
|
93 |
+
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
94 |
+
x = self.conv(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class Upsample(nn.Module):
|
99 |
+
def __init__(self, in_channels: int):
|
100 |
+
super().__init__()
|
101 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
102 |
+
|
103 |
+
def forward(self, x: Tensor):
|
104 |
+
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
105 |
+
x = self.conv(x)
|
106 |
+
return x
|
107 |
+
|
108 |
+
|
109 |
+
class Encoder(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
resolution: int,
|
113 |
+
in_channels: int,
|
114 |
+
ch: int,
|
115 |
+
ch_mult: list[int],
|
116 |
+
num_res_blocks: int,
|
117 |
+
z_channels: int,
|
118 |
+
):
|
119 |
+
super().__init__()
|
120 |
+
self.ch = ch
|
121 |
+
self.num_resolutions = len(ch_mult)
|
122 |
+
self.num_res_blocks = num_res_blocks
|
123 |
+
self.resolution = resolution
|
124 |
+
self.in_channels = in_channels
|
125 |
+
# downsampling
|
126 |
+
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
127 |
+
|
128 |
+
curr_res = resolution
|
129 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
130 |
+
self.in_ch_mult = in_ch_mult
|
131 |
+
self.down = nn.ModuleList()
|
132 |
+
block_in = self.ch
|
133 |
+
for i_level in range(self.num_resolutions):
|
134 |
+
block = nn.ModuleList()
|
135 |
+
attn = nn.ModuleList()
|
136 |
+
block_in = ch * in_ch_mult[i_level]
|
137 |
+
block_out = ch * ch_mult[i_level]
|
138 |
+
for _ in range(self.num_res_blocks):
|
139 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
140 |
+
block_in = block_out
|
141 |
+
down = nn.Module()
|
142 |
+
down.block = block
|
143 |
+
down.attn = attn
|
144 |
+
if i_level != self.num_resolutions - 1:
|
145 |
+
down.downsample = Downsample(block_in)
|
146 |
+
curr_res = curr_res // 2
|
147 |
+
self.down.append(down)
|
148 |
+
|
149 |
+
# middle
|
150 |
+
self.mid = nn.Module()
|
151 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
152 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
153 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
154 |
+
|
155 |
+
# end
|
156 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
157 |
+
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
158 |
+
|
159 |
+
def forward(self, x: Tensor) -> Tensor:
|
160 |
+
# downsampling
|
161 |
+
hs = [self.conv_in(x)]
|
162 |
+
for i_level in range(self.num_resolutions):
|
163 |
+
for i_block in range(self.num_res_blocks):
|
164 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
165 |
+
if len(self.down[i_level].attn) > 0:
|
166 |
+
h = self.down[i_level].attn[i_block](h)
|
167 |
+
hs.append(h)
|
168 |
+
if i_level != self.num_resolutions - 1:
|
169 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
170 |
+
|
171 |
+
# middle
|
172 |
+
h = hs[-1]
|
173 |
+
h = self.mid.block_1(h)
|
174 |
+
h = self.mid.attn_1(h)
|
175 |
+
h = self.mid.block_2(h)
|
176 |
+
# end
|
177 |
+
h = self.norm_out(h)
|
178 |
+
h = swish(h)
|
179 |
+
h = self.conv_out(h)
|
180 |
+
return h
|
181 |
+
|
182 |
+
|
183 |
+
class Decoder(nn.Module):
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
ch: int,
|
187 |
+
out_ch: int,
|
188 |
+
ch_mult: list[int],
|
189 |
+
num_res_blocks: int,
|
190 |
+
in_channels: int,
|
191 |
+
resolution: int,
|
192 |
+
z_channels: int,
|
193 |
+
):
|
194 |
+
super().__init__()
|
195 |
+
self.ch = ch
|
196 |
+
self.num_resolutions = len(ch_mult)
|
197 |
+
self.num_res_blocks = num_res_blocks
|
198 |
+
self.resolution = resolution
|
199 |
+
self.in_channels = in_channels
|
200 |
+
self.ffactor = 2 ** (self.num_resolutions - 1)
|
201 |
+
|
202 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
203 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
204 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
205 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
206 |
+
|
207 |
+
# z to block_in
|
208 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
209 |
+
|
210 |
+
# middle
|
211 |
+
self.mid = nn.Module()
|
212 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
213 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
214 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
215 |
+
|
216 |
+
# upsampling
|
217 |
+
self.up = nn.ModuleList()
|
218 |
+
for i_level in reversed(range(self.num_resolutions)):
|
219 |
+
block = nn.ModuleList()
|
220 |
+
attn = nn.ModuleList()
|
221 |
+
block_out = ch * ch_mult[i_level]
|
222 |
+
for _ in range(self.num_res_blocks + 1):
|
223 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
224 |
+
block_in = block_out
|
225 |
+
up = nn.Module()
|
226 |
+
up.block = block
|
227 |
+
up.attn = attn
|
228 |
+
if i_level != 0:
|
229 |
+
up.upsample = Upsample(block_in)
|
230 |
+
curr_res = curr_res * 2
|
231 |
+
self.up.insert(0, up) # prepend to get consistent order
|
232 |
+
|
233 |
+
# end
|
234 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
235 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
236 |
+
|
237 |
+
def forward(self, z: Tensor) -> Tensor:
|
238 |
+
# z to block_in
|
239 |
+
h = self.conv_in(z)
|
240 |
+
|
241 |
+
# middle
|
242 |
+
h = self.mid.block_1(h)
|
243 |
+
h = self.mid.attn_1(h)
|
244 |
+
h = self.mid.block_2(h)
|
245 |
+
|
246 |
+
# upsampling
|
247 |
+
for i_level in reversed(range(self.num_resolutions)):
|
248 |
+
for i_block in range(self.num_res_blocks + 1):
|
249 |
+
h = self.up[i_level].block[i_block](h)
|
250 |
+
if len(self.up[i_level].attn) > 0:
|
251 |
+
h = self.up[i_level].attn[i_block](h)
|
252 |
+
if i_level != 0:
|
253 |
+
h = self.up[i_level].upsample(h)
|
254 |
+
|
255 |
+
# end
|
256 |
+
h = self.norm_out(h)
|
257 |
+
h = swish(h)
|
258 |
+
h = self.conv_out(h)
|
259 |
+
return h
|
260 |
+
|
261 |
+
|
262 |
+
class DiagonalGaussian(nn.Module):
|
263 |
+
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
264 |
+
super().__init__()
|
265 |
+
self.sample = sample
|
266 |
+
self.chunk_dim = chunk_dim
|
267 |
+
|
268 |
+
def forward(self, z: Tensor) -> Tensor:
|
269 |
+
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
270 |
+
if self.sample:
|
271 |
+
std = torch.exp(0.5 * logvar)
|
272 |
+
return mean + std * torch.randn_like(mean)
|
273 |
+
else:
|
274 |
+
return mean
|
275 |
+
|
276 |
+
|
277 |
+
class AutoEncoder(nn.Module):
|
278 |
+
def __init__(self, params: AutoEncoderParams):
|
279 |
+
super().__init__()
|
280 |
+
self.encoder = Encoder(
|
281 |
+
resolution=params.resolution,
|
282 |
+
in_channels=params.in_channels,
|
283 |
+
ch=params.ch,
|
284 |
+
ch_mult=params.ch_mult,
|
285 |
+
num_res_blocks=params.num_res_blocks,
|
286 |
+
z_channels=params.z_channels,
|
287 |
+
)
|
288 |
+
self.decoder = Decoder(
|
289 |
+
resolution=params.resolution,
|
290 |
+
in_channels=params.in_channels,
|
291 |
+
ch=params.ch,
|
292 |
+
out_ch=params.out_ch,
|
293 |
+
ch_mult=params.ch_mult,
|
294 |
+
num_res_blocks=params.num_res_blocks,
|
295 |
+
z_channels=params.z_channels,
|
296 |
+
)
|
297 |
+
self.reg = DiagonalGaussian()
|
298 |
+
|
299 |
+
self.scale_factor = params.scale_factor
|
300 |
+
self.shift_factor = params.shift_factor
|
301 |
+
|
302 |
+
def encode(self, x: Tensor) -> Tensor:
|
303 |
+
z = self.reg(self.encoder(x))
|
304 |
+
z = self.scale_factor * (z - self.shift_factor)
|
305 |
+
return z
|
306 |
+
|
307 |
+
def encode_no_sampling(self, x: Tensor) -> Tensor:
|
308 |
+
z, _ = torch.chunk(self.encoder(x), 2, dim=1)
|
309 |
+
z = self.scale_factor * (z - self.shift_factor)
|
310 |
+
return z
|
311 |
+
|
312 |
+
def decode(self, z: Tensor) -> Tensor:
|
313 |
+
z = z / self.scale_factor + self.shift_factor
|
314 |
+
return self.decoder(z)
|
315 |
+
|
316 |
+
def forward(self, x: Tensor) -> Tensor:
|
317 |
+
return self.decode(self.encode(x))
|
flux/modules/conditioner.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import Tensor, nn
|
2 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
3 |
+
|
4 |
+
|
5 |
+
class HFEmbedder(nn.Module):
|
6 |
+
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
7 |
+
super().__init__()
|
8 |
+
self.is_clip = version.startswith("openai")
|
9 |
+
self.max_length = max_length
|
10 |
+
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
11 |
+
|
12 |
+
if self.is_clip:
|
13 |
+
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
14 |
+
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
15 |
+
else:
|
16 |
+
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
17 |
+
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
18 |
+
|
19 |
+
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
20 |
+
|
21 |
+
def forward(self, text: list[str]) -> Tensor:
|
22 |
+
batch_encoding = self.tokenizer(
|
23 |
+
text,
|
24 |
+
truncation=True,
|
25 |
+
max_length=self.max_length,
|
26 |
+
return_length=False,
|
27 |
+
return_overflowing_tokens=False,
|
28 |
+
padding="max_length",
|
29 |
+
return_tensors="pt",
|
30 |
+
)
|
31 |
+
|
32 |
+
outputs = self.hf_module(
|
33 |
+
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
34 |
+
attention_mask=None,
|
35 |
+
output_hidden_states=False,
|
36 |
+
)
|
37 |
+
return outputs[self.output_key]
|
flux/modules/layers.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
from torch import Tensor, nn
|
7 |
+
|
8 |
+
from flux.math import attention, rope
|
9 |
+
|
10 |
+
|
11 |
+
class EmbedND(nn.Module):
|
12 |
+
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
13 |
+
super().__init__()
|
14 |
+
self.dim = dim
|
15 |
+
self.theta = theta
|
16 |
+
self.axes_dim = axes_dim
|
17 |
+
|
18 |
+
def forward(self, ids: Tensor) -> Tensor:
|
19 |
+
n_axes = ids.shape[-1]
|
20 |
+
emb = torch.cat(
|
21 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
22 |
+
dim=-3,
|
23 |
+
)
|
24 |
+
|
25 |
+
return emb.unsqueeze(1)
|
26 |
+
|
27 |
+
|
28 |
+
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
29 |
+
"""
|
30 |
+
Create sinusoidal timestep embeddings.
|
31 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
32 |
+
These may be fractional.
|
33 |
+
:param dim: the dimension of the output.
|
34 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
35 |
+
:return: an (N, D) Tensor of positional embeddings.
|
36 |
+
"""
|
37 |
+
t = time_factor * t
|
38 |
+
half = dim // 2
|
39 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
40 |
+
t.device
|
41 |
+
)
|
42 |
+
|
43 |
+
args = t[:, None].float() * freqs[None]
|
44 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
45 |
+
if dim % 2:
|
46 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
47 |
+
if torch.is_floating_point(t):
|
48 |
+
embedding = embedding.to(t)
|
49 |
+
return embedding
|
50 |
+
|
51 |
+
|
52 |
+
class MLPEmbedder(nn.Module):
|
53 |
+
def __init__(self, in_dim: int, hidden_dim: int):
|
54 |
+
super().__init__()
|
55 |
+
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
56 |
+
self.silu = nn.SiLU()
|
57 |
+
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
58 |
+
|
59 |
+
def forward(self, x: Tensor) -> Tensor:
|
60 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
61 |
+
|
62 |
+
|
63 |
+
class RMSNorm(torch.nn.Module):
|
64 |
+
def __init__(self, dim: int):
|
65 |
+
super().__init__()
|
66 |
+
self.scale = nn.Parameter(torch.ones(dim))
|
67 |
+
|
68 |
+
def forward(self, x: Tensor):
|
69 |
+
x_dtype = x.dtype
|
70 |
+
x = x.float()
|
71 |
+
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
72 |
+
return (x * rrms).to(dtype=x_dtype) * self.scale
|
73 |
+
|
74 |
+
|
75 |
+
class QKNorm(torch.nn.Module):
|
76 |
+
def __init__(self, dim: int):
|
77 |
+
super().__init__()
|
78 |
+
self.query_norm = RMSNorm(dim)
|
79 |
+
self.key_norm = RMSNorm(dim)
|
80 |
+
|
81 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
82 |
+
q = self.query_norm(q)
|
83 |
+
k = self.key_norm(k)
|
84 |
+
return q.to(v), k.to(v)
|
85 |
+
|
86 |
+
|
87 |
+
class SelfAttention(nn.Module):
|
88 |
+
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
89 |
+
super().__init__()
|
90 |
+
self.num_heads = num_heads
|
91 |
+
head_dim = dim // num_heads
|
92 |
+
|
93 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
94 |
+
self.norm = QKNorm(head_dim)
|
95 |
+
self.proj = nn.Linear(dim, dim)
|
96 |
+
|
97 |
+
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
98 |
+
qkv = self.qkv(x)
|
99 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
100 |
+
q, k = self.norm(q, k, v)
|
101 |
+
x = attention(q, k, v, pe=pe)
|
102 |
+
x = self.proj(x)
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
@dataclass
|
107 |
+
class ModulationOut:
|
108 |
+
shift: Tensor
|
109 |
+
scale: Tensor
|
110 |
+
gate: Tensor
|
111 |
+
|
112 |
+
|
113 |
+
class Modulation(nn.Module):
|
114 |
+
def __init__(self, dim: int, double: bool):
|
115 |
+
super().__init__()
|
116 |
+
self.is_double = double
|
117 |
+
self.multiplier = 6 if double else 3
|
118 |
+
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
119 |
+
|
120 |
+
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut]:
|
121 |
+
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
122 |
+
|
123 |
+
return (
|
124 |
+
ModulationOut(*out[:3]),
|
125 |
+
ModulationOut(*out[3:]) if self.is_double else None,
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class DoubleStreamBlock(nn.Module):
|
130 |
+
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
131 |
+
super().__init__()
|
132 |
+
|
133 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
134 |
+
self.num_heads = num_heads
|
135 |
+
self.hidden_size = hidden_size
|
136 |
+
self.img_mod = Modulation(hidden_size, double=True)
|
137 |
+
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
138 |
+
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
139 |
+
|
140 |
+
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
141 |
+
self.img_mlp = nn.Sequential(
|
142 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
143 |
+
nn.GELU(approximate="tanh"),
|
144 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
145 |
+
)
|
146 |
+
|
147 |
+
self.txt_mod = Modulation(hidden_size, double=True)
|
148 |
+
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
149 |
+
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
150 |
+
|
151 |
+
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
152 |
+
self.txt_mlp = nn.Sequential(
|
153 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
154 |
+
nn.GELU(approximate="tanh"),
|
155 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
156 |
+
)
|
157 |
+
|
158 |
+
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
159 |
+
img_mod1, img_mod2 = self.img_mod(vec)
|
160 |
+
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
161 |
+
|
162 |
+
# prepare image for attention
|
163 |
+
img_modulated = self.img_norm1(img)
|
164 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
165 |
+
img_qkv = self.img_attn.qkv(img_modulated)
|
166 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
167 |
+
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
168 |
+
|
169 |
+
# prepare txt for attention
|
170 |
+
txt_modulated = self.txt_norm1(txt)
|
171 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
172 |
+
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
173 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
174 |
+
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
175 |
+
|
176 |
+
# run actual attention
|
177 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
178 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
179 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
180 |
+
|
181 |
+
attn = attention(q, k, v, pe=pe)
|
182 |
+
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
183 |
+
|
184 |
+
# calculate the img bloks
|
185 |
+
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
186 |
+
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
187 |
+
|
188 |
+
# calculate the txt bloks
|
189 |
+
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
190 |
+
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
191 |
+
return img, txt
|
192 |
+
|
193 |
+
|
194 |
+
class SingleStreamBlock(nn.Module):
|
195 |
+
"""
|
196 |
+
A DiT block with parallel linear layers as described in
|
197 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
198 |
+
"""
|
199 |
+
|
200 |
+
def __init__(
|
201 |
+
self,
|
202 |
+
hidden_size: int,
|
203 |
+
num_heads: int,
|
204 |
+
mlp_ratio: float = 4.0,
|
205 |
+
qk_scale: float = None,
|
206 |
+
):
|
207 |
+
super().__init__()
|
208 |
+
self.hidden_dim = hidden_size
|
209 |
+
self.num_heads = num_heads
|
210 |
+
head_dim = hidden_size // num_heads
|
211 |
+
self.scale = qk_scale or head_dim**-0.5
|
212 |
+
|
213 |
+
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
214 |
+
# qkv and mlp_in
|
215 |
+
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
216 |
+
# proj and mlp_out
|
217 |
+
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
218 |
+
|
219 |
+
self.norm = QKNorm(head_dim)
|
220 |
+
|
221 |
+
self.hidden_size = hidden_size
|
222 |
+
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
223 |
+
|
224 |
+
self.mlp_act = nn.GELU(approximate="tanh")
|
225 |
+
self.modulation = Modulation(hidden_size, double=False)
|
226 |
+
|
227 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
228 |
+
mod, _ = self.modulation(vec)
|
229 |
+
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
230 |
+
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
231 |
+
|
232 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
233 |
+
q, k = self.norm(q, k, v)
|
234 |
+
|
235 |
+
# compute attention
|
236 |
+
attn = attention(q, k, v, pe=pe)
|
237 |
+
# compute activation in mlp stream, cat again and run second linear layer
|
238 |
+
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
239 |
+
return x + mod.gate * output
|
240 |
+
|
241 |
+
|
242 |
+
class LastLayer(nn.Module):
|
243 |
+
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
244 |
+
super().__init__()
|
245 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
246 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
247 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
248 |
+
|
249 |
+
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
250 |
+
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
251 |
+
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
252 |
+
x = self.linear(x)
|
253 |
+
return x
|
flux/sampling.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Callable
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from torch import Tensor
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from .model import Flux
|
10 |
+
from .modules.conditioner import HFEmbedder
|
11 |
+
|
12 |
+
|
13 |
+
def get_noise(
|
14 |
+
num_samples: int,
|
15 |
+
height: int,
|
16 |
+
width: int,
|
17 |
+
device: torch.device,
|
18 |
+
dtype: torch.dtype,
|
19 |
+
seed: int,
|
20 |
+
):
|
21 |
+
return torch.randn(
|
22 |
+
num_samples,
|
23 |
+
16,
|
24 |
+
# allow for packing
|
25 |
+
2 * math.ceil(height / 16),
|
26 |
+
2 * math.ceil(width / 16),
|
27 |
+
device=device,
|
28 |
+
dtype=dtype,
|
29 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str) -> dict[str, Tensor]:
|
34 |
+
bs, c, h, w = img.shape
|
35 |
+
if bs == 1 and not isinstance(prompt, str):
|
36 |
+
bs = len(prompt)
|
37 |
+
|
38 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
39 |
+
if img.shape[0] == 1 and bs > 1:
|
40 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
41 |
+
|
42 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
43 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
44 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
45 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
46 |
+
img_ids = img_ids.to(img.dtype)
|
47 |
+
img_ids = img_ids.to(torch.bfloat16)
|
48 |
+
|
49 |
+
if isinstance(prompt, str):
|
50 |
+
prompt = [prompt]
|
51 |
+
txt = t5(prompt)
|
52 |
+
if txt.shape[0] == 1 and bs > 1:
|
53 |
+
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
54 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3).to(txt.dtype)
|
55 |
+
txt_ids = txt_ids.to(torch.bfloat16)
|
56 |
+
|
57 |
+
vec = clip(prompt)
|
58 |
+
if vec.shape[0] == 1 and bs > 1:
|
59 |
+
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
60 |
+
|
61 |
+
return {
|
62 |
+
"img": img,
|
63 |
+
"img_ids": img_ids.to(img.device),
|
64 |
+
"txt": txt.to(img.device),
|
65 |
+
"txt_ids": txt_ids.to(img.device),
|
66 |
+
"vec": vec.to(img.device),
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
def time_shift(mu: float, sigma: float, t: Tensor):
|
71 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
72 |
+
|
73 |
+
|
74 |
+
def get_lin_function(
|
75 |
+
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
76 |
+
) -> Callable[[float], float]:
|
77 |
+
m = (y2 - y1) / (x2 - x1)
|
78 |
+
b = y1 - m * x1
|
79 |
+
return lambda x: m * x + b
|
80 |
+
|
81 |
+
|
82 |
+
def get_schedule(
|
83 |
+
num_steps: int,
|
84 |
+
image_seq_len: int,
|
85 |
+
base_shift: float = 0.5,
|
86 |
+
max_shift: float = 1.15,
|
87 |
+
shift: bool = True,
|
88 |
+
) -> list[float]:
|
89 |
+
# extra step for zero
|
90 |
+
timesteps = torch.linspace(1, 0, num_steps + 1)
|
91 |
+
|
92 |
+
# shifting the schedule to favor high timesteps for higher signal images
|
93 |
+
if shift:
|
94 |
+
# eastimate mu based on linear estimation between two points
|
95 |
+
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
96 |
+
timesteps = time_shift(mu, 1.0, timesteps)
|
97 |
+
|
98 |
+
return timesteps.tolist()
|
99 |
+
|
100 |
+
def rf_inversion(
|
101 |
+
model: Flux,
|
102 |
+
img: Tensor,
|
103 |
+
img_ids: Tensor,
|
104 |
+
txt: Tensor,
|
105 |
+
txt_ids: Tensor,
|
106 |
+
vec: Tensor,
|
107 |
+
timesteps: list[float],
|
108 |
+
guidance: float = 4.0,
|
109 |
+
id_weight=1.0,
|
110 |
+
id=None,
|
111 |
+
start_step=0,
|
112 |
+
uncond_id=None,
|
113 |
+
true_cfg=1.0,
|
114 |
+
timestep_to_start_cfg=1,
|
115 |
+
neg_txt=None,
|
116 |
+
neg_txt_ids=None,
|
117 |
+
neg_vec=None,
|
118 |
+
aggressive_offload=False,
|
119 |
+
y_1: Tensor = None,
|
120 |
+
gamma: float = 0.5,
|
121 |
+
):
|
122 |
+
# reverse the timesteps
|
123 |
+
timesteps = timesteps[::-1]
|
124 |
+
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
125 |
+
use_true_cfg = abs(true_cfg - 1.0) > 1e-2
|
126 |
+
for i in tqdm(range(len(timesteps) - 1), desc="Inverting"):
|
127 |
+
t_i = i / len(timesteps)
|
128 |
+
t_vec = torch.full((img.shape[0],), t_i, dtype=img.dtype, device=img.device)
|
129 |
+
pred = model(
|
130 |
+
img=img,
|
131 |
+
img_ids=img_ids,
|
132 |
+
txt=txt,
|
133 |
+
txt_ids=txt_ids,
|
134 |
+
y=vec,
|
135 |
+
timesteps=t_vec,
|
136 |
+
guidance=guidance_vec,
|
137 |
+
id=id if (len(timesteps) - 1 - i) >= start_step else None,
|
138 |
+
id_weight=id_weight,
|
139 |
+
aggressive_offload=aggressive_offload,
|
140 |
+
)
|
141 |
+
|
142 |
+
if use_true_cfg and i >= timestep_to_start_cfg:
|
143 |
+
neg_pred = model(
|
144 |
+
img=img,
|
145 |
+
img_ids=img_ids,
|
146 |
+
txt=neg_txt,
|
147 |
+
txt_ids=neg_txt_ids,
|
148 |
+
y=neg_vec,
|
149 |
+
timesteps=t_vec,
|
150 |
+
guidance=guidance_vec,
|
151 |
+
id=uncond_id if (len(timesteps) - 1 - i) >= start_step else None,
|
152 |
+
id_weight=id_weight,
|
153 |
+
aggressive_offload=aggressive_offload,
|
154 |
+
)
|
155 |
+
pred = neg_pred + true_cfg * (pred - neg_pred)
|
156 |
+
|
157 |
+
assert (1 - t_i) != 0
|
158 |
+
u_t_i_cond = (y_1 - img) / (1 - t_i)
|
159 |
+
pred = pred + gamma * (u_t_i_cond - pred)
|
160 |
+
|
161 |
+
img = img + (timesteps[i+1] - timesteps[i]) * pred
|
162 |
+
|
163 |
+
return img
|
164 |
+
|
165 |
+
def rf_denoise(
|
166 |
+
model: Flux,
|
167 |
+
img: Tensor,
|
168 |
+
img_ids: Tensor,
|
169 |
+
txt: Tensor,
|
170 |
+
txt_ids: Tensor,
|
171 |
+
vec: Tensor,
|
172 |
+
timesteps: list[float],
|
173 |
+
guidance: float = 4.0,
|
174 |
+
id_weight=1.0,
|
175 |
+
id=None,
|
176 |
+
start_step=0,
|
177 |
+
uncond_id=None,
|
178 |
+
true_cfg=1.0,
|
179 |
+
timestep_to_start_cfg=1,
|
180 |
+
neg_txt=None,
|
181 |
+
neg_txt_ids=None,
|
182 |
+
neg_vec=None,
|
183 |
+
aggressive_offload=False,
|
184 |
+
y_0: Tensor = None,
|
185 |
+
eta=0.9,
|
186 |
+
s=0,
|
187 |
+
tau=6,
|
188 |
+
):
|
189 |
+
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
190 |
+
use_true_cfg = abs(true_cfg - 1.0) > 1e-2
|
191 |
+
for i in tqdm(range(len(timesteps) - 1), desc="Denoising"):
|
192 |
+
t_i = i / len(timesteps)
|
193 |
+
t_vec = torch.full((img.shape[0],), 1-t_i, dtype=img.dtype, device=img.device)
|
194 |
+
pred = model(
|
195 |
+
img=img,
|
196 |
+
img_ids=img_ids,
|
197 |
+
txt=txt,
|
198 |
+
txt_ids=txt_ids,
|
199 |
+
y=vec,
|
200 |
+
timesteps=t_vec,
|
201 |
+
guidance=guidance_vec,
|
202 |
+
id=id if i >= start_step else None,
|
203 |
+
id_weight=id_weight,
|
204 |
+
aggressive_offload=aggressive_offload,
|
205 |
+
)
|
206 |
+
|
207 |
+
if use_true_cfg and i >= timestep_to_start_cfg:
|
208 |
+
neg_pred = model(
|
209 |
+
img=img,
|
210 |
+
img_ids=img_ids,
|
211 |
+
txt=neg_txt,
|
212 |
+
txt_ids=neg_txt_ids,
|
213 |
+
y=neg_vec,
|
214 |
+
timesteps=t_vec,
|
215 |
+
guidance=guidance_vec,
|
216 |
+
id=uncond_id if i >= start_step else None,
|
217 |
+
id_weight=id_weight,
|
218 |
+
aggressive_offload=aggressive_offload,
|
219 |
+
)
|
220 |
+
pred = neg_pred + true_cfg * (pred - neg_pred)
|
221 |
+
pred = -pred
|
222 |
+
|
223 |
+
assert (1 - t_i) != 0
|
224 |
+
v_t_cond = (y_0 - img) / (1 - t_i)
|
225 |
+
eta_t = eta if s <= i < tau else 0
|
226 |
+
pred = pred + eta_t * (v_t_cond - pred)
|
227 |
+
|
228 |
+
img = img + (timesteps[i] - timesteps[i+1]) * pred
|
229 |
+
|
230 |
+
return img
|
231 |
+
|
232 |
+
def denoise(
|
233 |
+
model: Flux,
|
234 |
+
# model input
|
235 |
+
img: Tensor,
|
236 |
+
img_ids: Tensor,
|
237 |
+
txt: Tensor,
|
238 |
+
txt_ids: Tensor,
|
239 |
+
vec: Tensor,
|
240 |
+
timesteps: list[float],
|
241 |
+
guidance: float = 4.0,
|
242 |
+
id_weight=1.0,
|
243 |
+
id=None,
|
244 |
+
start_step=0,
|
245 |
+
uncond_id=None,
|
246 |
+
true_cfg=1.0,
|
247 |
+
timestep_to_start_cfg=1,
|
248 |
+
neg_txt=None,
|
249 |
+
neg_txt_ids=None,
|
250 |
+
neg_vec=None,
|
251 |
+
aggressive_offload=False,
|
252 |
+
):
|
253 |
+
# this is ignored for schnell
|
254 |
+
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
255 |
+
use_true_cfg = abs(true_cfg - 1.0) > 1e-2
|
256 |
+
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
|
257 |
+
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
258 |
+
pred = model(
|
259 |
+
img=img,
|
260 |
+
img_ids=img_ids,
|
261 |
+
txt=txt,
|
262 |
+
txt_ids=txt_ids,
|
263 |
+
y=vec,
|
264 |
+
timesteps=t_vec,
|
265 |
+
guidance=guidance_vec,
|
266 |
+
id=id if i >= start_step else None,
|
267 |
+
id_weight=id_weight,
|
268 |
+
aggressive_offload=aggressive_offload,
|
269 |
+
)
|
270 |
+
|
271 |
+
if use_true_cfg and i >= timestep_to_start_cfg:
|
272 |
+
neg_pred = model(
|
273 |
+
img=img,
|
274 |
+
img_ids=img_ids,
|
275 |
+
txt=neg_txt,
|
276 |
+
txt_ids=neg_txt_ids,
|
277 |
+
y=neg_vec,
|
278 |
+
timesteps=t_vec,
|
279 |
+
guidance=guidance_vec,
|
280 |
+
id=uncond_id if i >= start_step else None,
|
281 |
+
id_weight=id_weight,
|
282 |
+
aggressive_offload=aggressive_offload,
|
283 |
+
)
|
284 |
+
pred = neg_pred + true_cfg * (pred - neg_pred)
|
285 |
+
|
286 |
+
img = img + (t_prev - t_curr) * pred
|
287 |
+
|
288 |
+
return img
|
289 |
+
|
290 |
+
|
291 |
+
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
292 |
+
return rearrange(
|
293 |
+
x,
|
294 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
295 |
+
h=math.ceil(height / 16),
|
296 |
+
w=math.ceil(width / 16),
|
297 |
+
ph=2,
|
298 |
+
pw=2,
|
299 |
+
)
|
flux/util.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from dataclasses import dataclass
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from safetensors.torch import load_file as load_sft
|
8 |
+
|
9 |
+
from flux.model import Flux, FluxParams
|
10 |
+
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
|
11 |
+
from flux.modules.conditioner import HFEmbedder
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class SamplingOptions:
|
16 |
+
prompt: str
|
17 |
+
width: int
|
18 |
+
height: int
|
19 |
+
num_steps: int
|
20 |
+
guidance: float
|
21 |
+
seed: int
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class ModelSpec:
|
26 |
+
params: FluxParams
|
27 |
+
ae_params: AutoEncoderParams
|
28 |
+
ckpt_path: str
|
29 |
+
ae_path: str
|
30 |
+
repo_id: str
|
31 |
+
repo_flow: str
|
32 |
+
repo_ae: str
|
33 |
+
|
34 |
+
|
35 |
+
configs = {
|
36 |
+
"flux-dev": ModelSpec(
|
37 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
38 |
+
repo_flow="flux1-dev.safetensors",
|
39 |
+
repo_ae="ae.safetensors",
|
40 |
+
ckpt_path='models/flux1-dev.safetensors',
|
41 |
+
params=FluxParams(
|
42 |
+
in_channels=64,
|
43 |
+
vec_in_dim=768,
|
44 |
+
context_in_dim=4096,
|
45 |
+
hidden_size=3072,
|
46 |
+
mlp_ratio=4.0,
|
47 |
+
num_heads=24,
|
48 |
+
depth=19,
|
49 |
+
depth_single_blocks=38,
|
50 |
+
axes_dim=[16, 56, 56],
|
51 |
+
theta=10_000,
|
52 |
+
qkv_bias=True,
|
53 |
+
guidance_embed=True,
|
54 |
+
),
|
55 |
+
ae_path='models/ae.safetensors',
|
56 |
+
ae_params=AutoEncoderParams(
|
57 |
+
resolution=256,
|
58 |
+
in_channels=3,
|
59 |
+
ch=128,
|
60 |
+
out_ch=3,
|
61 |
+
ch_mult=[1, 2, 4, 4],
|
62 |
+
num_res_blocks=2,
|
63 |
+
z_channels=16,
|
64 |
+
scale_factor=0.3611,
|
65 |
+
shift_factor=0.1159,
|
66 |
+
),
|
67 |
+
),
|
68 |
+
"flux-schnell": ModelSpec(
|
69 |
+
repo_id="black-forest-labs/FLUX.1-schnell",
|
70 |
+
repo_flow="flux1-schnell.safetensors",
|
71 |
+
repo_ae="ae.safetensors",
|
72 |
+
ckpt_path=os.getenv("FLUX_SCHNELL"),
|
73 |
+
params=FluxParams(
|
74 |
+
in_channels=64,
|
75 |
+
vec_in_dim=768,
|
76 |
+
context_in_dim=4096,
|
77 |
+
hidden_size=3072,
|
78 |
+
mlp_ratio=4.0,
|
79 |
+
num_heads=24,
|
80 |
+
depth=19,
|
81 |
+
depth_single_blocks=38,
|
82 |
+
axes_dim=[16, 56, 56],
|
83 |
+
theta=10_000,
|
84 |
+
qkv_bias=True,
|
85 |
+
guidance_embed=False,
|
86 |
+
),
|
87 |
+
ae_path=os.getenv("AE"),
|
88 |
+
ae_params=AutoEncoderParams(
|
89 |
+
resolution=256,
|
90 |
+
in_channels=3,
|
91 |
+
ch=128,
|
92 |
+
out_ch=3,
|
93 |
+
ch_mult=[1, 2, 4, 4],
|
94 |
+
num_res_blocks=2,
|
95 |
+
z_channels=16,
|
96 |
+
scale_factor=0.3611,
|
97 |
+
shift_factor=0.1159,
|
98 |
+
),
|
99 |
+
),
|
100 |
+
}
|
101 |
+
|
102 |
+
|
103 |
+
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
104 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
105 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
106 |
+
print("\n" + "-" * 79 + "\n")
|
107 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
108 |
+
elif len(missing) > 0:
|
109 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
110 |
+
elif len(unexpected) > 0:
|
111 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
112 |
+
|
113 |
+
|
114 |
+
def load_flow_model(name: str, device: str = "cuda", hf_download: bool = True):
|
115 |
+
# Loading Flux
|
116 |
+
print("Init model")
|
117 |
+
ckpt_path = configs[name].ckpt_path
|
118 |
+
if (
|
119 |
+
not os.path.exists(ckpt_path)
|
120 |
+
and configs[name].repo_id is not None
|
121 |
+
and configs[name].repo_flow is not None
|
122 |
+
and hf_download
|
123 |
+
):
|
124 |
+
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow, local_dir='models')
|
125 |
+
|
126 |
+
# Initialize the model on the 'meta' device, which doesn't allocate real memory
|
127 |
+
with torch.device('meta'):
|
128 |
+
model = Flux(configs[name].params)
|
129 |
+
model = model.to_empty(device=device)
|
130 |
+
|
131 |
+
if ckpt_path is not None:
|
132 |
+
print("Loading checkpoint")
|
133 |
+
# Load the state dictionary directly to the desired device
|
134 |
+
sd = load_sft(ckpt_path, device=str(device))
|
135 |
+
# Load the state dictionary into the model
|
136 |
+
missing, unexpected = model.load_state_dict(sd, strict=False)
|
137 |
+
print_load_warning(missing, unexpected)
|
138 |
+
model.to(torch.bfloat16)
|
139 |
+
return model
|
140 |
+
|
141 |
+
# from XLabs-AI https://github.com/XLabs-AI/x-flux/blob/1f8ef54972105ad9062be69fe6b7f841bce02a08/src/flux/util.py#L330
|
142 |
+
def load_flow_model_quintized(name: str, device: str = "cuda", hf_download: bool = True):
|
143 |
+
# Loading Flux
|
144 |
+
print("Init model")
|
145 |
+
ckpt_path = 'models/flux-dev-fp8.safetensors'
|
146 |
+
if (
|
147 |
+
not os.path.exists(ckpt_path)
|
148 |
+
and hf_download
|
149 |
+
):
|
150 |
+
print("Downloading model")
|
151 |
+
ckpt_path = hf_hub_download("XLabs-AI/flux-dev-fp8", "flux-dev-fp8.safetensors")
|
152 |
+
print("Model downloaded to", ckpt_path)
|
153 |
+
json_path = hf_hub_download("XLabs-AI/flux-dev-fp8", 'flux_dev_quantization_map.json')
|
154 |
+
|
155 |
+
model = Flux(configs[name].params).to(torch.bfloat16)
|
156 |
+
def load_flow_model_quintized(
|
157 |
+
name: str,
|
158 |
+
device: str = "cuda",
|
159 |
+
hf_download: bool = True,
|
160 |
+
cache_path: str = None,
|
161 |
+
):
|
162 |
+
"""
|
163 |
+
Loads (or downloads) a FLUX-fp8 checkpoint, performs quantization once,
|
164 |
+
and caches the quantized model to disk. Future calls load from cache.
|
165 |
+
|
166 |
+
:param name: model name key in configs (e.g. "flux-dev-fp8")
|
167 |
+
:param device: Torch device string ("cuda" or "cpu")
|
168 |
+
:param hf_download: Whether to download from HF if local ckpt is missing
|
169 |
+
:param cache_path: Filepath for cached quantized model
|
170 |
+
:return: A quantized FLUX model on the specified device.
|
171 |
+
"""
|
172 |
+
if cache_path is None:
|
173 |
+
cache_path = os.path.join(os.path.expanduser("~"), ".cache/flux_dev_fp8_quantized_model.pth")
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
# 1) Check if we already have a cached, quantized model
|
178 |
+
if os.path.exists(cache_path):
|
179 |
+
print(f"Loading cached quantized model from '{cache_path}'...")
|
180 |
+
model = torch.load(cache_path, map_location=device)
|
181 |
+
return model.to(device)
|
182 |
+
|
183 |
+
# 2) If no cache, build and quantize for the first time.
|
184 |
+
print("No cached model found. Initializing + quantizing from scratch.")
|
185 |
+
|
186 |
+
# (A) Download or specify checkpoint paths
|
187 |
+
ckpt_path = "models/flux-dev-fp8.safetensors"
|
188 |
+
if not os.path.exists(ckpt_path) and hf_download:
|
189 |
+
print("Downloading model checkpoint from HF...")
|
190 |
+
ckpt_path = hf_hub_download("XLabs-AI/flux-dev-fp8", "flux-dev-fp8.safetensors")
|
191 |
+
print("Model downloaded to:", ckpt_path)
|
192 |
+
|
193 |
+
json_path = hf_hub_download("XLabs-AI/flux-dev-fp8", "flux_dev_quantization_map.json")
|
194 |
+
|
195 |
+
# (B) Build the unquantized model
|
196 |
+
print("Initializing model in bfloat16...")
|
197 |
+
model = Flux(configs[name].params).to(torch.bfloat16)
|
198 |
+
|
199 |
+
# (C) Load the unquantized weights
|
200 |
+
print("Loading unquantized checkpoint to CPU...")
|
201 |
+
sd = load_sft(ckpt_path, device="cpu") # CPU load
|
202 |
+
|
203 |
+
# (D) Load quantization map
|
204 |
+
with open(json_path, "r") as f:
|
205 |
+
quantization_map = json.load(f)
|
206 |
+
|
207 |
+
# (E) Quantize
|
208 |
+
print("Starting quantization process...")
|
209 |
+
from optimum.quanto import requantize
|
210 |
+
requantize(model, sd, quantization_map, device=device)
|
211 |
+
print("Quantization complete.")
|
212 |
+
|
213 |
+
# (F) Cache the fully quantized model to disk
|
214 |
+
print(f"Saving the quantized model to '{cache_path}'...")
|
215 |
+
torch.save(model, cache_path)
|
216 |
+
print("Model saved. Future runs will load from cache.")
|
217 |
+
|
218 |
+
return model.to(device)
|
219 |
+
|
220 |
+
|
221 |
+
def load_t5(device: str = "cuda", max_length: int = 512) -> HFEmbedder:
|
222 |
+
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
|
223 |
+
return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device)
|
224 |
+
|
225 |
+
|
226 |
+
def load_clip(device: str = "cuda") -> HFEmbedder:
|
227 |
+
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
|
228 |
+
|
229 |
+
|
230 |
+
def load_ae(name: str, device: str = "cuda", hf_download: bool = True) -> AutoEncoder:
|
231 |
+
ckpt_path = configs[name].ae_path
|
232 |
+
if (
|
233 |
+
not os.path.exists(ckpt_path)
|
234 |
+
and configs[name].repo_id is not None
|
235 |
+
and configs[name].repo_ae is not None
|
236 |
+
and hf_download
|
237 |
+
):
|
238 |
+
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae, local_dir='models')
|
239 |
+
|
240 |
+
# Loading the autoencoder
|
241 |
+
print("Init AE")
|
242 |
+
with torch.device(device):
|
243 |
+
ae = AutoEncoder(configs[name].ae_params)
|
244 |
+
|
245 |
+
if ckpt_path is not None:
|
246 |
+
sd = load_sft(ckpt_path, device=str(device))
|
247 |
+
missing, unexpected = ae.load_state_dict(sd, strict=False)
|
248 |
+
print_load_warning(missing, unexpected)
|
249 |
+
return ae
|
fonts/arial.ttf
ADDED
Binary file (276 kB). View file
|
|
pulid/attention_processor.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
NUM_ZERO = 0
|
7 |
+
ORTHO = False
|
8 |
+
ORTHO_v2 = False
|
9 |
+
|
10 |
+
|
11 |
+
class AttnProcessor(nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
def __call__(
|
16 |
+
self,
|
17 |
+
attn,
|
18 |
+
hidden_states,
|
19 |
+
encoder_hidden_states=None,
|
20 |
+
attention_mask=None,
|
21 |
+
temb=None,
|
22 |
+
id_embedding=None,
|
23 |
+
id_scale=1.0,
|
24 |
+
):
|
25 |
+
residual = hidden_states
|
26 |
+
|
27 |
+
if attn.spatial_norm is not None:
|
28 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
29 |
+
|
30 |
+
input_ndim = hidden_states.ndim
|
31 |
+
|
32 |
+
if input_ndim == 4:
|
33 |
+
batch_size, channel, height, width = hidden_states.shape
|
34 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
35 |
+
|
36 |
+
batch_size, sequence_length, _ = (
|
37 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
38 |
+
)
|
39 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
40 |
+
|
41 |
+
if attn.group_norm is not None:
|
42 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
43 |
+
|
44 |
+
query = attn.to_q(hidden_states)
|
45 |
+
|
46 |
+
if encoder_hidden_states is None:
|
47 |
+
encoder_hidden_states = hidden_states
|
48 |
+
elif attn.norm_cross:
|
49 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
50 |
+
|
51 |
+
key = attn.to_k(encoder_hidden_states)
|
52 |
+
value = attn.to_v(encoder_hidden_states)
|
53 |
+
|
54 |
+
query = attn.head_to_batch_dim(query)
|
55 |
+
key = attn.head_to_batch_dim(key)
|
56 |
+
value = attn.head_to_batch_dim(value)
|
57 |
+
|
58 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
59 |
+
hidden_states = torch.bmm(attention_probs, value)
|
60 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
61 |
+
|
62 |
+
# linear proj
|
63 |
+
hidden_states = attn.to_out[0](hidden_states)
|
64 |
+
# dropout
|
65 |
+
hidden_states = attn.to_out[1](hidden_states)
|
66 |
+
|
67 |
+
if input_ndim == 4:
|
68 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
69 |
+
|
70 |
+
if attn.residual_connection:
|
71 |
+
hidden_states = hidden_states + residual
|
72 |
+
|
73 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
74 |
+
|
75 |
+
return hidden_states
|
76 |
+
|
77 |
+
|
78 |
+
class IDAttnProcessor(nn.Module):
|
79 |
+
r"""
|
80 |
+
Attention processor for ID-Adapater.
|
81 |
+
Args:
|
82 |
+
hidden_size (`int`):
|
83 |
+
The hidden size of the attention layer.
|
84 |
+
cross_attention_dim (`int`):
|
85 |
+
The number of channels in the `encoder_hidden_states`.
|
86 |
+
scale (`float`, defaults to 1.0):
|
87 |
+
the weight scale of image prompt.
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(self, hidden_size, cross_attention_dim=None):
|
91 |
+
super().__init__()
|
92 |
+
self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
93 |
+
self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
94 |
+
|
95 |
+
def __call__(
|
96 |
+
self,
|
97 |
+
attn,
|
98 |
+
hidden_states,
|
99 |
+
encoder_hidden_states=None,
|
100 |
+
attention_mask=None,
|
101 |
+
temb=None,
|
102 |
+
id_embedding=None,
|
103 |
+
id_scale=1.0,
|
104 |
+
):
|
105 |
+
residual = hidden_states
|
106 |
+
|
107 |
+
if attn.spatial_norm is not None:
|
108 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
109 |
+
|
110 |
+
input_ndim = hidden_states.ndim
|
111 |
+
|
112 |
+
if input_ndim == 4:
|
113 |
+
batch_size, channel, height, width = hidden_states.shape
|
114 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
115 |
+
|
116 |
+
batch_size, sequence_length, _ = (
|
117 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
118 |
+
)
|
119 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
120 |
+
|
121 |
+
if attn.group_norm is not None:
|
122 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
123 |
+
|
124 |
+
query = attn.to_q(hidden_states)
|
125 |
+
|
126 |
+
if encoder_hidden_states is None:
|
127 |
+
encoder_hidden_states = hidden_states
|
128 |
+
elif attn.norm_cross:
|
129 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
130 |
+
|
131 |
+
key = attn.to_k(encoder_hidden_states)
|
132 |
+
value = attn.to_v(encoder_hidden_states)
|
133 |
+
|
134 |
+
query = attn.head_to_batch_dim(query)
|
135 |
+
key = attn.head_to_batch_dim(key)
|
136 |
+
value = attn.head_to_batch_dim(value)
|
137 |
+
|
138 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
139 |
+
hidden_states = torch.bmm(attention_probs, value)
|
140 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
141 |
+
|
142 |
+
# for id-adapter
|
143 |
+
if id_embedding is not None:
|
144 |
+
if NUM_ZERO == 0:
|
145 |
+
id_key = self.id_to_k(id_embedding)
|
146 |
+
id_value = self.id_to_v(id_embedding)
|
147 |
+
else:
|
148 |
+
zero_tensor = torch.zeros(
|
149 |
+
(id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)),
|
150 |
+
dtype=id_embedding.dtype,
|
151 |
+
device=id_embedding.device,
|
152 |
+
)
|
153 |
+
id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1))
|
154 |
+
id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1))
|
155 |
+
|
156 |
+
id_key = attn.head_to_batch_dim(id_key).to(query.dtype)
|
157 |
+
id_value = attn.head_to_batch_dim(id_value).to(query.dtype)
|
158 |
+
|
159 |
+
id_attention_probs = attn.get_attention_scores(query, id_key, None)
|
160 |
+
id_hidden_states = torch.bmm(id_attention_probs, id_value)
|
161 |
+
id_hidden_states = attn.batch_to_head_dim(id_hidden_states)
|
162 |
+
|
163 |
+
if not ORTHO:
|
164 |
+
hidden_states = hidden_states + id_scale * id_hidden_states
|
165 |
+
else:
|
166 |
+
projection = (
|
167 |
+
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
|
168 |
+
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
|
169 |
+
* hidden_states
|
170 |
+
)
|
171 |
+
orthogonal = id_hidden_states - projection
|
172 |
+
hidden_states = hidden_states + id_scale * orthogonal
|
173 |
+
|
174 |
+
# linear proj
|
175 |
+
hidden_states = attn.to_out[0](hidden_states)
|
176 |
+
# dropout
|
177 |
+
hidden_states = attn.to_out[1](hidden_states)
|
178 |
+
|
179 |
+
if input_ndim == 4:
|
180 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
181 |
+
|
182 |
+
if attn.residual_connection:
|
183 |
+
hidden_states = hidden_states + residual
|
184 |
+
|
185 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
186 |
+
|
187 |
+
return hidden_states
|
188 |
+
|
189 |
+
|
190 |
+
class AttnProcessor2_0(nn.Module):
|
191 |
+
r"""
|
192 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
193 |
+
"""
|
194 |
+
|
195 |
+
def __init__(self):
|
196 |
+
super().__init__()
|
197 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
198 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
199 |
+
|
200 |
+
def __call__(
|
201 |
+
self,
|
202 |
+
attn,
|
203 |
+
hidden_states,
|
204 |
+
encoder_hidden_states=None,
|
205 |
+
attention_mask=None,
|
206 |
+
temb=None,
|
207 |
+
id_embedding=None,
|
208 |
+
id_scale=1.0,
|
209 |
+
):
|
210 |
+
residual = hidden_states
|
211 |
+
|
212 |
+
if attn.spatial_norm is not None:
|
213 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
214 |
+
|
215 |
+
input_ndim = hidden_states.ndim
|
216 |
+
|
217 |
+
if input_ndim == 4:
|
218 |
+
batch_size, channel, height, width = hidden_states.shape
|
219 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
220 |
+
|
221 |
+
batch_size, sequence_length, _ = (
|
222 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
223 |
+
)
|
224 |
+
|
225 |
+
if attention_mask is not None:
|
226 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
227 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
228 |
+
# (batch, heads, source_length, target_length)
|
229 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
230 |
+
|
231 |
+
if attn.group_norm is not None:
|
232 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
233 |
+
|
234 |
+
query = attn.to_q(hidden_states)
|
235 |
+
|
236 |
+
if encoder_hidden_states is None:
|
237 |
+
encoder_hidden_states = hidden_states
|
238 |
+
elif attn.norm_cross:
|
239 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
240 |
+
|
241 |
+
key = attn.to_k(encoder_hidden_states)
|
242 |
+
value = attn.to_v(encoder_hidden_states)
|
243 |
+
|
244 |
+
inner_dim = key.shape[-1]
|
245 |
+
head_dim = inner_dim // attn.heads
|
246 |
+
|
247 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
248 |
+
|
249 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
250 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
251 |
+
|
252 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
253 |
+
hidden_states = F.scaled_dot_product_attention(
|
254 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
255 |
+
)
|
256 |
+
|
257 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
258 |
+
hidden_states = hidden_states.to(query.dtype)
|
259 |
+
|
260 |
+
# linear proj
|
261 |
+
hidden_states = attn.to_out[0](hidden_states)
|
262 |
+
# dropout
|
263 |
+
hidden_states = attn.to_out[1](hidden_states)
|
264 |
+
|
265 |
+
if input_ndim == 4:
|
266 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
267 |
+
|
268 |
+
if attn.residual_connection:
|
269 |
+
hidden_states = hidden_states + residual
|
270 |
+
|
271 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
272 |
+
|
273 |
+
return hidden_states
|
274 |
+
|
275 |
+
|
276 |
+
class IDAttnProcessor2_0(torch.nn.Module):
|
277 |
+
r"""
|
278 |
+
Attention processor for ID-Adapater for PyTorch 2.0.
|
279 |
+
Args:
|
280 |
+
hidden_size (`int`):
|
281 |
+
The hidden size of the attention layer.
|
282 |
+
cross_attention_dim (`int`):
|
283 |
+
The number of channels in the `encoder_hidden_states`.
|
284 |
+
"""
|
285 |
+
|
286 |
+
def __init__(self, hidden_size, cross_attention_dim=None):
|
287 |
+
super().__init__()
|
288 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
289 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
290 |
+
|
291 |
+
self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
292 |
+
self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
293 |
+
|
294 |
+
def __call__(
|
295 |
+
self,
|
296 |
+
attn,
|
297 |
+
hidden_states,
|
298 |
+
encoder_hidden_states=None,
|
299 |
+
attention_mask=None,
|
300 |
+
temb=None,
|
301 |
+
id_embedding=None,
|
302 |
+
id_scale=1.0,
|
303 |
+
):
|
304 |
+
residual = hidden_states
|
305 |
+
|
306 |
+
if attn.spatial_norm is not None:
|
307 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
308 |
+
|
309 |
+
input_ndim = hidden_states.ndim
|
310 |
+
|
311 |
+
if input_ndim == 4:
|
312 |
+
batch_size, channel, height, width = hidden_states.shape
|
313 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
314 |
+
|
315 |
+
batch_size, sequence_length, _ = (
|
316 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
317 |
+
)
|
318 |
+
|
319 |
+
if attention_mask is not None:
|
320 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
321 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
322 |
+
# (batch, heads, source_length, target_length)
|
323 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
324 |
+
|
325 |
+
if attn.group_norm is not None:
|
326 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
327 |
+
|
328 |
+
query = attn.to_q(hidden_states)
|
329 |
+
|
330 |
+
if encoder_hidden_states is None:
|
331 |
+
encoder_hidden_states = hidden_states
|
332 |
+
elif attn.norm_cross:
|
333 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
334 |
+
|
335 |
+
key = attn.to_k(encoder_hidden_states)
|
336 |
+
value = attn.to_v(encoder_hidden_states)
|
337 |
+
|
338 |
+
inner_dim = key.shape[-1]
|
339 |
+
head_dim = inner_dim // attn.heads
|
340 |
+
|
341 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
342 |
+
|
343 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
344 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
345 |
+
|
346 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
347 |
+
hidden_states = F.scaled_dot_product_attention(
|
348 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
349 |
+
)
|
350 |
+
|
351 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
352 |
+
hidden_states = hidden_states.to(query.dtype)
|
353 |
+
|
354 |
+
# for id embedding
|
355 |
+
if id_embedding is not None:
|
356 |
+
if NUM_ZERO == 0:
|
357 |
+
id_key = self.id_to_k(id_embedding).to(query.dtype)
|
358 |
+
id_value = self.id_to_v(id_embedding).to(query.dtype)
|
359 |
+
else:
|
360 |
+
zero_tensor = torch.zeros(
|
361 |
+
(id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)),
|
362 |
+
dtype=id_embedding.dtype,
|
363 |
+
device=id_embedding.device,
|
364 |
+
)
|
365 |
+
id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype)
|
366 |
+
id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1)).to(query.dtype)
|
367 |
+
|
368 |
+
id_key = id_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
369 |
+
id_value = id_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
370 |
+
|
371 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
372 |
+
id_hidden_states = F.scaled_dot_product_attention(
|
373 |
+
query, id_key, id_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
374 |
+
)
|
375 |
+
|
376 |
+
id_hidden_states = id_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
377 |
+
id_hidden_states = id_hidden_states.to(query.dtype)
|
378 |
+
|
379 |
+
if not ORTHO and not ORTHO_v2:
|
380 |
+
hidden_states = hidden_states + id_scale * id_hidden_states
|
381 |
+
elif ORTHO_v2:
|
382 |
+
orig_dtype = hidden_states.dtype
|
383 |
+
hidden_states = hidden_states.to(torch.float32)
|
384 |
+
id_hidden_states = id_hidden_states.to(torch.float32)
|
385 |
+
attn_map = query @ id_key.transpose(-2, -1)
|
386 |
+
attn_mean = attn_map.softmax(dim=-1).mean(dim=1)
|
387 |
+
attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True)
|
388 |
+
projection = (
|
389 |
+
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
|
390 |
+
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
|
391 |
+
* hidden_states
|
392 |
+
)
|
393 |
+
orthogonal = id_hidden_states + (attn_mean - 1) * projection
|
394 |
+
hidden_states = hidden_states + id_scale * orthogonal
|
395 |
+
hidden_states = hidden_states.to(orig_dtype)
|
396 |
+
else:
|
397 |
+
orig_dtype = hidden_states.dtype
|
398 |
+
hidden_states = hidden_states.to(torch.float32)
|
399 |
+
id_hidden_states = id_hidden_states.to(torch.float32)
|
400 |
+
projection = (
|
401 |
+
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
|
402 |
+
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
|
403 |
+
* hidden_states
|
404 |
+
)
|
405 |
+
orthogonal = id_hidden_states - projection
|
406 |
+
hidden_states = hidden_states + id_scale * orthogonal
|
407 |
+
hidden_states = hidden_states.to(orig_dtype)
|
408 |
+
|
409 |
+
# linear proj
|
410 |
+
hidden_states = attn.to_out[0](hidden_states)
|
411 |
+
# dropout
|
412 |
+
hidden_states = attn.to_out[1](hidden_states)
|
413 |
+
|
414 |
+
if input_ndim == 4:
|
415 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
416 |
+
|
417 |
+
if attn.residual_connection:
|
418 |
+
hidden_states = hidden_states + residual
|
419 |
+
|
420 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
421 |
+
|
422 |
+
return hidden_states
|
pulid/encoders.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class IDEncoder(nn.Module):
|
6 |
+
def __init__(self, width=1280, context_dim=2048, num_token=5):
|
7 |
+
super().__init__()
|
8 |
+
self.num_token = num_token
|
9 |
+
self.context_dim = context_dim
|
10 |
+
h1 = min((context_dim * num_token) // 4, 1024)
|
11 |
+
h2 = min((context_dim * num_token) // 2, 1024)
|
12 |
+
self.body = nn.Sequential(
|
13 |
+
nn.Linear(width, h1),
|
14 |
+
nn.LayerNorm(h1),
|
15 |
+
nn.LeakyReLU(),
|
16 |
+
nn.Linear(h1, h2),
|
17 |
+
nn.LayerNorm(h2),
|
18 |
+
nn.LeakyReLU(),
|
19 |
+
nn.Linear(h2, context_dim * num_token),
|
20 |
+
)
|
21 |
+
|
22 |
+
for i in range(5):
|
23 |
+
setattr(
|
24 |
+
self,
|
25 |
+
f'mapping_{i}',
|
26 |
+
nn.Sequential(
|
27 |
+
nn.Linear(1024, 1024),
|
28 |
+
nn.LayerNorm(1024),
|
29 |
+
nn.LeakyReLU(),
|
30 |
+
nn.Linear(1024, 1024),
|
31 |
+
nn.LayerNorm(1024),
|
32 |
+
nn.LeakyReLU(),
|
33 |
+
nn.Linear(1024, context_dim),
|
34 |
+
),
|
35 |
+
)
|
36 |
+
|
37 |
+
setattr(
|
38 |
+
self,
|
39 |
+
f'mapping_patch_{i}',
|
40 |
+
nn.Sequential(
|
41 |
+
nn.Linear(1024, 1024),
|
42 |
+
nn.LayerNorm(1024),
|
43 |
+
nn.LeakyReLU(),
|
44 |
+
nn.Linear(1024, 1024),
|
45 |
+
nn.LayerNorm(1024),
|
46 |
+
nn.LeakyReLU(),
|
47 |
+
nn.Linear(1024, context_dim),
|
48 |
+
),
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, x, y):
|
52 |
+
# x shape [N, C]
|
53 |
+
x = self.body(x)
|
54 |
+
x = x.reshape(-1, self.num_token, self.context_dim)
|
55 |
+
|
56 |
+
hidden_states = ()
|
57 |
+
for i, emb in enumerate(y):
|
58 |
+
hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')(
|
59 |
+
emb[:, 1:]
|
60 |
+
).mean(dim=1, keepdim=True)
|
61 |
+
hidden_states += (hidden_state,)
|
62 |
+
hidden_states = torch.cat(hidden_states, dim=1)
|
63 |
+
|
64 |
+
return torch.cat([x, hidden_states], dim=1)
|
pulid/encoders_transformer.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
# FFN
|
8 |
+
def FeedForward(dim, mult=4):
|
9 |
+
inner_dim = int(dim * mult)
|
10 |
+
return nn.Sequential(
|
11 |
+
nn.LayerNorm(dim),
|
12 |
+
nn.Linear(dim, inner_dim, bias=False),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.Linear(inner_dim, dim, bias=False),
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def reshape_tensor(x, heads):
|
19 |
+
bs, length, width = x.shape
|
20 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
21 |
+
x = x.view(bs, length, heads, -1)
|
22 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
23 |
+
x = x.transpose(1, 2)
|
24 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
25 |
+
x = x.reshape(bs, heads, length, -1)
|
26 |
+
return x
|
27 |
+
|
28 |
+
|
29 |
+
class PerceiverAttentionCA(nn.Module):
|
30 |
+
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
|
31 |
+
super().__init__()
|
32 |
+
self.scale = dim_head ** -0.5
|
33 |
+
self.dim_head = dim_head
|
34 |
+
self.heads = heads
|
35 |
+
inner_dim = dim_head * heads
|
36 |
+
|
37 |
+
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
38 |
+
self.norm2 = nn.LayerNorm(dim)
|
39 |
+
|
40 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
41 |
+
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
42 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
43 |
+
|
44 |
+
def forward(self, x, latents):
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
x (torch.Tensor): image features
|
48 |
+
shape (b, n1, D)
|
49 |
+
latent (torch.Tensor): latent features
|
50 |
+
shape (b, n2, D)
|
51 |
+
"""
|
52 |
+
x = self.norm1(x)
|
53 |
+
latents = self.norm2(latents)
|
54 |
+
|
55 |
+
b, seq_len, _ = latents.shape
|
56 |
+
|
57 |
+
q = self.to_q(latents)
|
58 |
+
k, v = self.to_kv(x).chunk(2, dim=-1)
|
59 |
+
|
60 |
+
q = reshape_tensor(q, self.heads)
|
61 |
+
k = reshape_tensor(k, self.heads)
|
62 |
+
v = reshape_tensor(v, self.heads)
|
63 |
+
|
64 |
+
# attention
|
65 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
66 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
67 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
68 |
+
out = weight @ v
|
69 |
+
|
70 |
+
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
|
71 |
+
|
72 |
+
return self.to_out(out)
|
73 |
+
|
74 |
+
|
75 |
+
class PerceiverAttention(nn.Module):
|
76 |
+
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
|
77 |
+
super().__init__()
|
78 |
+
self.scale = dim_head ** -0.5
|
79 |
+
self.dim_head = dim_head
|
80 |
+
self.heads = heads
|
81 |
+
inner_dim = dim_head * heads
|
82 |
+
|
83 |
+
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
84 |
+
self.norm2 = nn.LayerNorm(dim)
|
85 |
+
|
86 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
87 |
+
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
88 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
89 |
+
|
90 |
+
def forward(self, x, latents):
|
91 |
+
"""
|
92 |
+
Args:
|
93 |
+
x (torch.Tensor): image features
|
94 |
+
shape (b, n1, D)
|
95 |
+
latent (torch.Tensor): latent features
|
96 |
+
shape (b, n2, D)
|
97 |
+
"""
|
98 |
+
x = self.norm1(x)
|
99 |
+
latents = self.norm2(latents)
|
100 |
+
|
101 |
+
b, seq_len, _ = latents.shape
|
102 |
+
|
103 |
+
q = self.to_q(latents)
|
104 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
105 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
106 |
+
|
107 |
+
q = reshape_tensor(q, self.heads)
|
108 |
+
k = reshape_tensor(k, self.heads)
|
109 |
+
v = reshape_tensor(v, self.heads)
|
110 |
+
|
111 |
+
# attention
|
112 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
113 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
114 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
115 |
+
out = weight @ v
|
116 |
+
|
117 |
+
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)
|
118 |
+
|
119 |
+
return self.to_out(out)
|
120 |
+
|
121 |
+
|
122 |
+
class IDFormer(nn.Module):
|
123 |
+
"""
|
124 |
+
- perceiver resampler like arch (compared with previous MLP-like arch)
|
125 |
+
- we concat id embedding (generated by arcface) and query tokens as latents
|
126 |
+
- latents will attend each other and interact with vit features through cross-attention
|
127 |
+
- vit features are multi-scaled and inserted into IDFormer in order, currently, each scale corresponds to two
|
128 |
+
IDFormer layers
|
129 |
+
"""
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
dim=1024,
|
133 |
+
depth=10,
|
134 |
+
dim_head=64,
|
135 |
+
heads=16,
|
136 |
+
num_id_token=5,
|
137 |
+
num_queries=32,
|
138 |
+
output_dim=2048,
|
139 |
+
ff_mult=4,
|
140 |
+
):
|
141 |
+
super().__init__()
|
142 |
+
|
143 |
+
self.num_id_token = num_id_token
|
144 |
+
self.dim = dim
|
145 |
+
self.num_queries = num_queries
|
146 |
+
assert depth % 5 == 0
|
147 |
+
self.depth = depth // 5
|
148 |
+
scale = dim ** -0.5
|
149 |
+
|
150 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale)
|
151 |
+
self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim))
|
152 |
+
|
153 |
+
self.layers = nn.ModuleList([])
|
154 |
+
for _ in range(depth):
|
155 |
+
self.layers.append(
|
156 |
+
nn.ModuleList(
|
157 |
+
[
|
158 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
159 |
+
FeedForward(dim=dim, mult=ff_mult),
|
160 |
+
]
|
161 |
+
)
|
162 |
+
)
|
163 |
+
|
164 |
+
for i in range(5):
|
165 |
+
setattr(
|
166 |
+
self,
|
167 |
+
f'mapping_{i}',
|
168 |
+
nn.Sequential(
|
169 |
+
nn.Linear(1024, 1024),
|
170 |
+
nn.LayerNorm(1024),
|
171 |
+
nn.LeakyReLU(),
|
172 |
+
nn.Linear(1024, 1024),
|
173 |
+
nn.LayerNorm(1024),
|
174 |
+
nn.LeakyReLU(),
|
175 |
+
nn.Linear(1024, dim),
|
176 |
+
),
|
177 |
+
)
|
178 |
+
|
179 |
+
self.id_embedding_mapping = nn.Sequential(
|
180 |
+
nn.Linear(1280, 1024),
|
181 |
+
nn.LayerNorm(1024),
|
182 |
+
nn.LeakyReLU(),
|
183 |
+
nn.Linear(1024, 1024),
|
184 |
+
nn.LayerNorm(1024),
|
185 |
+
nn.LeakyReLU(),
|
186 |
+
nn.Linear(1024, dim * num_id_token),
|
187 |
+
)
|
188 |
+
|
189 |
+
def forward(self, x, y):
|
190 |
+
|
191 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
192 |
+
|
193 |
+
num_duotu = x.shape[1] if x.ndim == 3 else 1
|
194 |
+
|
195 |
+
x = self.id_embedding_mapping(x)
|
196 |
+
x = x.reshape(-1, self.num_id_token * num_duotu, self.dim)
|
197 |
+
|
198 |
+
latents = torch.cat((latents, x), dim=1)
|
199 |
+
|
200 |
+
for i in range(5):
|
201 |
+
vit_feature = getattr(self, f'mapping_{i}')(y[i])
|
202 |
+
ctx_feature = torch.cat((x, vit_feature), dim=1)
|
203 |
+
for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]:
|
204 |
+
latents = attn(ctx_feature, latents) + latents
|
205 |
+
latents = ff(latents) + latents
|
206 |
+
|
207 |
+
latents = latents[:, :self.num_queries]
|
208 |
+
latents = latents @ self.proj_out
|
209 |
+
return latents
|
pulid/pipeline.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import insightface
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from diffusers import (
|
8 |
+
DPMSolverMultistepScheduler,
|
9 |
+
StableDiffusionXLPipeline,
|
10 |
+
UNet2DConditionModel,
|
11 |
+
)
|
12 |
+
from facexlib.parsing import init_parsing_model
|
13 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
14 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
15 |
+
from insightface.app import FaceAnalysis
|
16 |
+
from safetensors.torch import load_file
|
17 |
+
from torchvision.transforms import InterpolationMode
|
18 |
+
from torchvision.transforms.functional import normalize, resize
|
19 |
+
|
20 |
+
from eva_clip import create_model_and_transforms
|
21 |
+
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
22 |
+
from pulid.encoders import IDEncoder
|
23 |
+
from pulid.utils import img2tensor, is_torch2_available, tensor2img
|
24 |
+
|
25 |
+
if is_torch2_available():
|
26 |
+
from pulid.attention_processor import AttnProcessor2_0 as AttnProcessor
|
27 |
+
from pulid.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor
|
28 |
+
else:
|
29 |
+
from pulid.attention_processor import AttnProcessor, IDAttnProcessor
|
30 |
+
|
31 |
+
|
32 |
+
class PuLIDPipeline:
|
33 |
+
def __init__(self, *args, **kwargs):
|
34 |
+
super().__init__()
|
35 |
+
self.device = 'cuda'
|
36 |
+
sdxl_base_repo = 'stabilityai/stable-diffusion-xl-base-1.0'
|
37 |
+
sdxl_lightning_repo = 'ByteDance/SDXL-Lightning'
|
38 |
+
self.sdxl_base_repo = sdxl_base_repo
|
39 |
+
|
40 |
+
# load base model
|
41 |
+
unet = UNet2DConditionModel.from_config(sdxl_base_repo, subfolder='unet').to(self.device, torch.float16)
|
42 |
+
unet.load_state_dict(
|
43 |
+
load_file(
|
44 |
+
hf_hub_download(sdxl_lightning_repo, 'sdxl_lightning_4step_unet.safetensors'), device=self.device
|
45 |
+
)
|
46 |
+
)
|
47 |
+
self.hack_unet_attn_layers(unet)
|
48 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
49 |
+
sdxl_base_repo, unet=unet, torch_dtype=torch.float16, variant="fp16"
|
50 |
+
).to(self.device)
|
51 |
+
self.pipe.watermark = None
|
52 |
+
|
53 |
+
# scheduler
|
54 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
55 |
+
self.pipe.scheduler.config, timestep_spacing="trailing"
|
56 |
+
)
|
57 |
+
|
58 |
+
# ID adapters
|
59 |
+
self.id_adapter = IDEncoder().to(self.device)
|
60 |
+
|
61 |
+
# preprocessors
|
62 |
+
# face align and parsing
|
63 |
+
self.face_helper = FaceRestoreHelper(
|
64 |
+
upscale_factor=1,
|
65 |
+
face_size=512,
|
66 |
+
crop_ratio=(1, 1),
|
67 |
+
det_model='retinaface_resnet50',
|
68 |
+
save_ext='png',
|
69 |
+
device=self.device,
|
70 |
+
)
|
71 |
+
self.face_helper.face_parse = None
|
72 |
+
self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device)
|
73 |
+
# clip-vit backbone
|
74 |
+
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
|
75 |
+
model = model.visual
|
76 |
+
self.clip_vision_model = model.to(self.device)
|
77 |
+
eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN)
|
78 |
+
eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD)
|
79 |
+
if not isinstance(eva_transform_mean, (list, tuple)):
|
80 |
+
eva_transform_mean = (eva_transform_mean,) * 3
|
81 |
+
if not isinstance(eva_transform_std, (list, tuple)):
|
82 |
+
eva_transform_std = (eva_transform_std,) * 3
|
83 |
+
self.eva_transform_mean = eva_transform_mean
|
84 |
+
self.eva_transform_std = eva_transform_std
|
85 |
+
# antelopev2
|
86 |
+
snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2')
|
87 |
+
self.app = FaceAnalysis(
|
88 |
+
name='antelopev2', root='.', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
|
89 |
+
)
|
90 |
+
self.app.prepare(ctx_id=0, det_size=(640, 640))
|
91 |
+
self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx')
|
92 |
+
self.handler_ante.prepare(ctx_id=0)
|
93 |
+
|
94 |
+
gc.collect()
|
95 |
+
torch.cuda.empty_cache()
|
96 |
+
|
97 |
+
self.load_pretrain()
|
98 |
+
|
99 |
+
# other configs
|
100 |
+
self.debug_img_list = []
|
101 |
+
|
102 |
+
def hack_unet_attn_layers(self, unet):
|
103 |
+
id_adapter_attn_procs = {}
|
104 |
+
for name, _ in unet.attn_processors.items():
|
105 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
106 |
+
if name.startswith("mid_block"):
|
107 |
+
hidden_size = unet.config.block_out_channels[-1]
|
108 |
+
elif name.startswith("up_blocks"):
|
109 |
+
block_id = int(name[len("up_blocks.")])
|
110 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
111 |
+
elif name.startswith("down_blocks"):
|
112 |
+
block_id = int(name[len("down_blocks.")])
|
113 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
114 |
+
if cross_attention_dim is not None:
|
115 |
+
id_adapter_attn_procs[name] = IDAttnProcessor(
|
116 |
+
hidden_size=hidden_size,
|
117 |
+
cross_attention_dim=cross_attention_dim,
|
118 |
+
).to(unet.device)
|
119 |
+
else:
|
120 |
+
id_adapter_attn_procs[name] = AttnProcessor()
|
121 |
+
unet.set_attn_processor(id_adapter_attn_procs)
|
122 |
+
self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values())
|
123 |
+
|
124 |
+
def load_pretrain(self):
|
125 |
+
hf_hub_download('guozinan/PuLID', 'pulid_v1.bin', local_dir='models')
|
126 |
+
ckpt_path = 'models/pulid_v1.bin'
|
127 |
+
state_dict = torch.load(ckpt_path, map_location='cpu')
|
128 |
+
state_dict_dict = {}
|
129 |
+
for k, v in state_dict.items():
|
130 |
+
module = k.split('.')[0]
|
131 |
+
state_dict_dict.setdefault(module, {})
|
132 |
+
new_k = k[len(module) + 1 :]
|
133 |
+
state_dict_dict[module][new_k] = v
|
134 |
+
|
135 |
+
for module in state_dict_dict:
|
136 |
+
print(f'loading from {module}')
|
137 |
+
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
|
138 |
+
|
139 |
+
def to_gray(self, img):
|
140 |
+
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
|
141 |
+
x = x.repeat(1, 3, 1, 1)
|
142 |
+
return x
|
143 |
+
|
144 |
+
def get_id_embedding(self, image):
|
145 |
+
"""
|
146 |
+
Args:
|
147 |
+
image: numpy rgb image, range [0, 255]
|
148 |
+
"""
|
149 |
+
self.face_helper.clean_all()
|
150 |
+
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
151 |
+
# get antelopev2 embedding
|
152 |
+
face_info = self.app.get(image_bgr)
|
153 |
+
if len(face_info) > 0:
|
154 |
+
face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
|
155 |
+
-1
|
156 |
+
] # only use the maximum face
|
157 |
+
id_ante_embedding = face_info['embedding']
|
158 |
+
self.debug_img_list.append(
|
159 |
+
image[
|
160 |
+
int(face_info['bbox'][1]) : int(face_info['bbox'][3]),
|
161 |
+
int(face_info['bbox'][0]) : int(face_info['bbox'][2]),
|
162 |
+
]
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
id_ante_embedding = None
|
166 |
+
|
167 |
+
# using facexlib to detect and align face
|
168 |
+
self.face_helper.read_image(image_bgr)
|
169 |
+
self.face_helper.get_face_landmarks_5(only_center_face=True)
|
170 |
+
self.face_helper.align_warp_face()
|
171 |
+
if len(self.face_helper.cropped_faces) == 0:
|
172 |
+
raise RuntimeError('facexlib align face fail')
|
173 |
+
align_face = self.face_helper.cropped_faces[0]
|
174 |
+
# incase insightface didn't detect face
|
175 |
+
if id_ante_embedding is None:
|
176 |
+
print('fail to detect face using insightface, extract embedding on align face')
|
177 |
+
id_ante_embedding = self.handler_ante.get_feat(align_face)
|
178 |
+
|
179 |
+
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device)
|
180 |
+
if id_ante_embedding.ndim == 1:
|
181 |
+
id_ante_embedding = id_ante_embedding.unsqueeze(0)
|
182 |
+
|
183 |
+
# parsing
|
184 |
+
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
|
185 |
+
input = input.to(self.device)
|
186 |
+
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
187 |
+
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
188 |
+
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
189 |
+
bg = sum(parsing_out == i for i in bg_label).bool()
|
190 |
+
white_image = torch.ones_like(input)
|
191 |
+
# only keep the face features
|
192 |
+
face_features_image = torch.where(bg, white_image, self.to_gray(input))
|
193 |
+
self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False))
|
194 |
+
|
195 |
+
# transform img before sending to eva-clip-vit
|
196 |
+
face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC)
|
197 |
+
face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std)
|
198 |
+
id_cond_vit, id_vit_hidden = self.clip_vision_model(
|
199 |
+
face_features_image, return_all_features=False, return_hidden=True, shuffle=False
|
200 |
+
)
|
201 |
+
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
|
202 |
+
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
|
203 |
+
|
204 |
+
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1)
|
205 |
+
id_uncond = torch.zeros_like(id_cond)
|
206 |
+
id_vit_hidden_uncond = []
|
207 |
+
for layer_idx in range(0, len(id_vit_hidden)):
|
208 |
+
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx]))
|
209 |
+
|
210 |
+
id_embedding = self.id_adapter(id_cond, id_vit_hidden)
|
211 |
+
uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond)
|
212 |
+
|
213 |
+
# return id_embedding
|
214 |
+
return torch.cat((uncond_id_embedding, id_embedding), dim=0)
|
215 |
+
|
216 |
+
def inference(self, prompt, size, prompt_n='', image_embedding=None, id_scale=1.0, guidance_scale=1.2, steps=4):
|
217 |
+
images = self.pipe(
|
218 |
+
prompt=prompt,
|
219 |
+
negative_prompt=prompt_n,
|
220 |
+
num_images_per_prompt=size[0],
|
221 |
+
height=size[1],
|
222 |
+
width=size[2],
|
223 |
+
num_inference_steps=steps,
|
224 |
+
guidance_scale=guidance_scale,
|
225 |
+
cross_attention_kwargs={'id_embedding': image_embedding, 'id_scale': id_scale},
|
226 |
+
).images
|
227 |
+
|
228 |
+
return images
|
pulid/pipeline_flux.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import insightface
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from facexlib.parsing import init_parsing_model
|
8 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
9 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
10 |
+
from insightface.app import FaceAnalysis
|
11 |
+
from safetensors.torch import load_file
|
12 |
+
from torchvision.transforms import InterpolationMode
|
13 |
+
from torchvision.transforms.functional import normalize, resize
|
14 |
+
|
15 |
+
from eva_clip import create_model_and_transforms
|
16 |
+
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
17 |
+
from pulid.encoders_transformer import IDFormer, PerceiverAttentionCA
|
18 |
+
from pulid.utils import img2tensor, tensor2img
|
19 |
+
|
20 |
+
|
21 |
+
class PuLIDPipeline(nn.Module):
|
22 |
+
def __init__(self, dit, device, weight_dtype=torch.bfloat16, onnx_provider='gpu', *args, **kwargs):
|
23 |
+
super().__init__()
|
24 |
+
self.device = device
|
25 |
+
self.weight_dtype = weight_dtype
|
26 |
+
double_interval = 2
|
27 |
+
single_interval = 4
|
28 |
+
|
29 |
+
# init encoder
|
30 |
+
self.pulid_encoder = IDFormer().to(self.device, self.weight_dtype)
|
31 |
+
|
32 |
+
num_ca = 19 // double_interval + 38 // single_interval
|
33 |
+
if 19 % double_interval != 0:
|
34 |
+
num_ca += 1
|
35 |
+
if 38 % single_interval != 0:
|
36 |
+
num_ca += 1
|
37 |
+
self.pulid_ca = nn.ModuleList([
|
38 |
+
PerceiverAttentionCA().to(self.device, self.weight_dtype) for _ in range(num_ca)
|
39 |
+
])
|
40 |
+
|
41 |
+
dit.pulid_ca = self.pulid_ca
|
42 |
+
dit.pulid_double_interval = double_interval
|
43 |
+
dit.pulid_single_interval = single_interval
|
44 |
+
|
45 |
+
# preprocessors
|
46 |
+
# face align and parsing
|
47 |
+
self.face_helper = FaceRestoreHelper(
|
48 |
+
upscale_factor=1,
|
49 |
+
face_size=512,
|
50 |
+
crop_ratio=(1, 1),
|
51 |
+
det_model='retinaface_resnet50',
|
52 |
+
save_ext='png',
|
53 |
+
device=self.device,
|
54 |
+
)
|
55 |
+
self.face_helper.face_parse = None
|
56 |
+
self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device)
|
57 |
+
# clip-vit backbone
|
58 |
+
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
|
59 |
+
model = model.visual
|
60 |
+
self.clip_vision_model = model.to(self.device, dtype=self.weight_dtype)
|
61 |
+
eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN)
|
62 |
+
eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD)
|
63 |
+
if not isinstance(eva_transform_mean, (list, tuple)):
|
64 |
+
eva_transform_mean = (eva_transform_mean,) * 3
|
65 |
+
if not isinstance(eva_transform_std, (list, tuple)):
|
66 |
+
eva_transform_std = (eva_transform_std,) * 3
|
67 |
+
self.eva_transform_mean = eva_transform_mean
|
68 |
+
self.eva_transform_std = eva_transform_std
|
69 |
+
# antelopev2
|
70 |
+
snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2')
|
71 |
+
providers = ['CPUExecutionProvider'] if onnx_provider == 'cpu' \
|
72 |
+
else ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
73 |
+
self.app = FaceAnalysis(name='antelopev2', root='.', providers=providers)
|
74 |
+
self.app.prepare(ctx_id=0, det_size=(640, 640))
|
75 |
+
self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx',
|
76 |
+
providers=providers)
|
77 |
+
self.handler_ante.prepare(ctx_id=0)
|
78 |
+
|
79 |
+
gc.collect()
|
80 |
+
torch.cuda.empty_cache()
|
81 |
+
|
82 |
+
# self.load_pretrain()
|
83 |
+
|
84 |
+
# other configs
|
85 |
+
self.debug_img_list = []
|
86 |
+
|
87 |
+
def components_to_device(self, device):
|
88 |
+
# everything but pulid_ca
|
89 |
+
self.face_helper.face_det = self.face_helper.face_det.to(device)
|
90 |
+
self.face_helper.face_parse = self.face_helper.face_parse.to(device)
|
91 |
+
self.clip_vision_model = self.clip_vision_model.to(device)
|
92 |
+
self.pulid_encoder = self.pulid_encoder.to(device)
|
93 |
+
|
94 |
+
def load_pretrain(self, pretrain_path=None, version='v0.9.0'):
|
95 |
+
hf_hub_download('guozinan/PuLID', f'pulid_flux_{version}.safetensors', local_dir='models')
|
96 |
+
ckpt_path = f'models/pulid_flux_{version}.safetensors'
|
97 |
+
if pretrain_path is not None:
|
98 |
+
ckpt_path = pretrain_path
|
99 |
+
state_dict = load_file(ckpt_path)
|
100 |
+
state_dict_dict = {}
|
101 |
+
for k, v in state_dict.items():
|
102 |
+
module = k.split('.')[0]
|
103 |
+
state_dict_dict.setdefault(module, {})
|
104 |
+
new_k = k[len(module) + 1:]
|
105 |
+
state_dict_dict[module][new_k] = v
|
106 |
+
|
107 |
+
for module in state_dict_dict:
|
108 |
+
print(f'loading from {module}')
|
109 |
+
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
|
110 |
+
|
111 |
+
del state_dict
|
112 |
+
del state_dict_dict
|
113 |
+
|
114 |
+
def to_gray(self, img):
|
115 |
+
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
|
116 |
+
x = x.repeat(1, 3, 1, 1)
|
117 |
+
return x
|
118 |
+
|
119 |
+
@torch.no_grad()
|
120 |
+
def get_id_embedding(self, image, cal_uncond=False):
|
121 |
+
"""
|
122 |
+
Args:
|
123 |
+
image: numpy rgb image, range [0, 255]
|
124 |
+
"""
|
125 |
+
self.face_helper.clean_all()
|
126 |
+
self.debug_img_list = []
|
127 |
+
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
128 |
+
# get antelopev2 embedding
|
129 |
+
face_info = self.app.get(image_bgr)
|
130 |
+
if len(face_info) > 0:
|
131 |
+
face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
|
132 |
+
-1
|
133 |
+
] # only use the maximum face
|
134 |
+
id_ante_embedding = face_info['embedding']
|
135 |
+
self.debug_img_list.append(
|
136 |
+
image[
|
137 |
+
int(face_info['bbox'][1]) : int(face_info['bbox'][3]),
|
138 |
+
int(face_info['bbox'][0]) : int(face_info['bbox'][2]),
|
139 |
+
]
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
id_ante_embedding = None
|
143 |
+
|
144 |
+
# using facexlib to detect and align face
|
145 |
+
self.face_helper.read_image(image_bgr)
|
146 |
+
self.face_helper.get_face_landmarks_5(only_center_face=True)
|
147 |
+
self.face_helper.align_warp_face()
|
148 |
+
if len(self.face_helper.cropped_faces) == 0:
|
149 |
+
raise RuntimeError('facexlib align face fail')
|
150 |
+
align_face = self.face_helper.cropped_faces[0]
|
151 |
+
# incase insightface didn't detect face
|
152 |
+
if id_ante_embedding is None:
|
153 |
+
print('fail to detect face using insightface, extract embedding on align face')
|
154 |
+
id_ante_embedding = self.handler_ante.get_feat(align_face)
|
155 |
+
|
156 |
+
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device, self.weight_dtype)
|
157 |
+
if id_ante_embedding.ndim == 1:
|
158 |
+
id_ante_embedding = id_ante_embedding.unsqueeze(0)
|
159 |
+
|
160 |
+
# parsing
|
161 |
+
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
|
162 |
+
input = input.to(self.device)
|
163 |
+
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
164 |
+
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
165 |
+
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
166 |
+
bg = sum(parsing_out == i for i in bg_label).bool()
|
167 |
+
white_image = torch.ones_like(input)
|
168 |
+
# only keep the face features
|
169 |
+
face_features_image = torch.where(bg, white_image, self.to_gray(input))
|
170 |
+
self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False))
|
171 |
+
|
172 |
+
# transform img before sending to eva-clip-vit
|
173 |
+
face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC)
|
174 |
+
face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std)
|
175 |
+
id_cond_vit, id_vit_hidden = self.clip_vision_model(
|
176 |
+
face_features_image.to(self.weight_dtype), return_all_features=False, return_hidden=True, shuffle=False
|
177 |
+
)
|
178 |
+
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
|
179 |
+
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
|
180 |
+
|
181 |
+
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1)
|
182 |
+
|
183 |
+
id_embedding = self.pulid_encoder(id_cond, id_vit_hidden)
|
184 |
+
|
185 |
+
if not cal_uncond:
|
186 |
+
return id_embedding, None
|
187 |
+
|
188 |
+
id_uncond = torch.zeros_like(id_cond)
|
189 |
+
id_vit_hidden_uncond = []
|
190 |
+
for layer_idx in range(0, len(id_vit_hidden)):
|
191 |
+
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx]))
|
192 |
+
uncond_id_embedding = self.pulid_encoder(id_uncond, id_vit_hidden_uncond)
|
193 |
+
|
194 |
+
return id_embedding, uncond_id_embedding
|