import streamlit as st import polars as pl import pickle, os from pathlib import Path from datetime import date from st_keyup import st_keyup import webbrowser from helper import find_similar_movies from movie_class import store_movies from utils import get_movie_instance from scipy import sparse from scipy.sparse import _csr st.set_page_config(layout="wide", page_title="Movie recommender App") DATABASE_NAME = Path("./database/movies_database.db") COLUMNS = 7 K = COLUMNS * 2 # caching important data @st.cache_data def load_data(): return pl.read_csv(Path("./dataset/movies_clean_final.csv")) # @st.cache_data def load_vector(): # Load pickel as vector with open("vector.pkl", "rb") as f: return pickle.load(f) @st.cache_data def load_movie_info(): # Load pickel as vector2 with open("movie_info.pkl", "rb") as f: return pickle.load(f) # Function to show latest movies def show_latest_movies(movie_df, k=10): return ( movie_df.filter(pl.col("year") <= date.today().year) .sort("year", descending=True) .head(k)["title"] .to_list() ) # Function to get popular movies def show_popular_movies(movie_df, year=None, k=10): if year is None: x = movie_df.sort(["votes", "rating"], descending=True)["title"].to_list() else: x = movie_df.filter(pl.col("year") == year) x = x.sort(["votes", "rating"], descending=True)["title"].to_list() return x[:k] # Function to get movie recommendations and display them def movies_show(list_of_movies, K, COLUMNS): # Process and display movie recommendations movies_entries = [] cols = st.columns(COLUMNS) plot = 1 for num, recommended_movie_name in enumerate(list_of_movies): if plot == K + 1: break movie_instance = get_movie_instance(recommended_movie_name) if movie_instance: if movie_instance.img_poster: with cols[(plot - 1) % COLUMNS]: st.write( movie_poster_iframe( movie_instance.title, movie_instance.year, movie_instance.img_poster, ), unsafe_allow_html=True, ) plot += 1 movies_entries.append(movie_instance) # Store the movie entries in the database store_movies(movies_entries, database_name=DATABASE_NAME) # Function to get movie recommendations and display them def get_movie_recommendations(user_movie, movie_df, vector, K, COLUMNS): # Find similar movie names recommended_movie_names = find_similar_movies( user_movie, movie_df, vector=vector, k=3 * K ) movies_show(recommended_movie_names, K, COLUMNS) def movie_poster_iframe( movie_name, movie_year, poster_url, movie_page_url="url unavailable" ): return f"""
""" # create a movie recommendation app using streamlit hide_menu_style = """ """ def main(): st.title("Movie Recommendation") st.markdown(hide_menu_style, unsafe_allow_html=True) # sidebar if st.sidebar.button("Code/Github"): webbrowser.open("https://github.com/tikendraw/movie-recommender-system") st.sidebar.success("Star the Repo for Moral Support") st.sidebar.write("Connect with Tikendra") if st.sidebar.button("LinkedIn"): webbrowser.open("www.linkedin.com/in/tikendraw") if st.sidebar.button("Github"): webbrowser.open("https://github.com/tikendraw") st.sidebar.info( """ The system determines movie similarity primarily through the analysis of movie synopsis or plot summaries. While this approach allows us to identify movies with similar themes, plots, or storylines, it might occasionally lead to recommendations for lesser-known or niche films. Such movies may not have garnered significant popularity or exposure among the general audience. """ ) # read csv in dataset folder as movie_df using polar movie_df = load_data() movies_list = pl.Series(movie_df["title"].to_list()) st.write("Movies:", len(movies_list)) # input st.write( f"We have {len(movies_list)} Movies, try to type the Name and shortlist in the box below " ) if keywords := st_keyup(" "): filtered = movie_df.filter( movie_df["title"].str.to_lowercase().str.contains(keywords.lower()) )["title"].to_list() else: filtered = movies_list user_movie = st.selectbox( "Select your movie, (Shortlist above, then select below)", filtered ) find = st.button("Recommend") vector = load_vector() movies_info = load_movie_info() latest_mov = show_latest_movies(movie_df=movie_df, k=K) popular_mov = show_popular_movies(movie_df=movie_df, k=K) popular_mov_this_year = show_popular_movies( movie_df=movie_df, year=date.today().year, k=K ) # st.write(latest_mov) if find: st.write(f"you chose : '{user_movie}'") with st.spinner( "Finding Movies for you...(Close you eyes and count to 10 slowly.🫣)" ): get_movie_recommendations(user_movie, movie_df, vector, K, COLUMNS) st.header(f"Latest Movies({date.today().year})") movies_show(latest_mov, K, COLUMNS) st.header(f"Popular Movies({date.today().year})") movies_show(popular_mov_this_year, K, COLUMNS) st.header("All time Popular Movies") movies_show(popular_mov, K, COLUMNS) if __name__ == "__main__": main()