Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
2 |
+
|
3 |
+
def generate_diary(emotion, num_samples=1, max_length=100, temperature=0.7):
|
4 |
+
# ๊ฐ์ ์ ๊ธฐ๋ฐ์ผ๋ก ์ผ๊ธฐ๋ฅผ ์์ฑํ ํ ํฌ๋์ด์ ์ ๋ชจ๋ธ ๋ถ๋ฌ์ค๊ธฐ
|
5 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
6 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
7 |
+
|
8 |
+
# ๊ฐ์ ์ ๋ฐ๋ผ prefix ๋ฌธ์ฅ ์์ฑ
|
9 |
+
if emotion == "happy":
|
10 |
+
prefix = "์ค๋์ ๊ธฐ๋ถ์ด ์ข์์. "
|
11 |
+
elif emotion == "sad":
|
12 |
+
prefix = "์ฌํ ๊ธฐ๋ถ์ด์์. "
|
13 |
+
elif emotion == "angry":
|
14 |
+
prefix = "ํ๊ฐ ์น๋ฐ์ด ์ค๋ฅด๋ ๊ธฐ๋ถ์ด์์. "
|
15 |
+
else:
|
16 |
+
prefix = "์ค๋์ ๊ธฐ๋ถ์ด ์ด์ํด์. "
|
17 |
+
|
18 |
+
# prefix๋ฅผ ํ ํฌ๋์ด์งํ์ฌ ์
๋ ฅ ์ํ์ค ์์ฑ
|
19 |
+
input_sequence = tokenizer.encode(prefix, return_tensors="pt")
|
20 |
+
|
21 |
+
# ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ํ
์คํธ ์์ฑ
|
22 |
+
output = model.generate(
|
23 |
+
input_sequence,
|
24 |
+
max_length=max_length,
|
25 |
+
num_return_sequences=num_samples,
|
26 |
+
temperature=temperature,
|
27 |
+
pad_token_id=tokenizer.eos_token_id
|
28 |
+
)
|
29 |
+
|
30 |
+
# ์์ฑ๋ ์ผ๊ธฐ ๋ฐํ
|
31 |
+
return [tokenizer.decode(output_sequence, skip_special_tokens=True) for output_sequence in output]
|
32 |
+
|
33 |
+
def main():
|
34 |
+
# ์ฌ์ฉ์๋ก๋ถํฐ ๊ฐ์ ์
๋ ฅ ๋ฐ๊ธฐ
|
35 |
+
emotion = input("์ค๋์ ๊ฐ์ ์ ์
๋ ฅํ์ธ์ (happy, sad, angry ๋ฑ): ")
|
36 |
+
# ์ผ๊ธฐ ์์ฑ
|
37 |
+
diary_entries = generate_diary(emotion)
|
38 |
+
# ์์ฑ๋ ์ผ๊ธฐ ์ถ๋ ฅ
|
39 |
+
print("์ค๋์ ์ผ๊ธฐ:")
|
40 |
+
for i, entry in enumerate(diary_entries, start=1):
|
41 |
+
print(f"{i}. {entry}")
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
main()
|