File size: 6,001 Bytes
81dcb15
42a21e8
a4844a1
 
 
 
6840d6b
a4844a1
 
6840d6b
a4844a1
 
6840d6b
a4844a1
 
 
b3feaa3
 
 
a4844a1
 
6840d6b
a4844a1
 
 
b3feaa3
 
a4844a1
 
 
 
 
 
6840d6b
a4844a1
33d7cfe
b3feaa3
6840d6b
 
b3feaa3
33d7cfe
b3feaa3
 
6840d6b
 
0e3c4d0
a4844a1
6840d6b
 
b3feaa3
6840d6b
 
0e3c4d0
6840d6b
02b756e
 
 
6840d6b
a4844a1
 
b3feaa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4844a1
42a21e8
 
a4844a1
6840d6b
b3feaa3
6840d6b
 
42a21e8
6840d6b
a4844a1
 
b3feaa3
81dcb15
 
 
b3feaa3
81dcb15
a4844a1
 
 
81dcb15
42a21e8
81dcb15
a4844a1
81dcb15
42a21e8
81dcb15
a4844a1
42a21e8
 
 
bca33fd
711c0ff
a4844a1
42a21e8
6840d6b
42a21e8
 
a4844a1
42a21e8
a4844a1
 
42a21e8
 
a4844a1
42a21e8
 
 
6840d6b
42a21e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import plotly.graph_objects as go  # Import Plotly for interactive plots
from mpl_toolkits.mplot3d import Axes3D  # Not needed anymore, but you can keep it if you use it elsewhere
import networkx as nx
import numpy as np
import json
import sys
import random

def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G, parent=None, node_count_per_depth=None):
    """Generates a tree of nodes with positions adjusted on the x-axis, y-axis, and number of nodes on the z-axis."""
    if node_count_per_depth is None:
        node_count_per_depth = {}

    if depth > max_depth:
        return node_count_per_depth

    if depth not in node_count_per_depth:
        node_count_per_depth[depth] = 0

    num_children = random.randint(1, max_nodes)
    x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)]

    for x in x_positions:
        node_id = len(G.nodes)
        node_count_per_depth[depth] += 1
        prob = random.uniform(0, 1)
        G.add_node(node_id, pos=(x, prob, depth))
        if parent is not None:
            G.add_edge(parent, node_id)
        generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth)

    return node_count_per_depth


def build_graph_from_json(json_data, G):
    """Builds a graph from JSON data, handling subevents recursively."""

    def add_event(parent_id, event_data, depth):
        node_id = len(G.nodes)
        prob = event_data['probability'] / 100.0
        # Use event_number as the z-coordinate for better visualization
        pos = (depth, prob, event_data['event_number'])
        label = event_data['name']
        G.add_node(node_id, pos=pos, label=label)
        if parent_id is not None:
            G.add_edge(parent_id, node_id)  # Connect to parent

        subevents = event_data.get('subevents', {}).get('event', [])
        if not isinstance(subevents, list):
            subevents = [subevents]

        for subevent in subevents:
            add_event(node_id, subevent, depth + 1)  # Recursively add subevents

    # Iterate through all top-level events
    for event_data in json_data.get('events', {}).values():
        add_event(None, event_data, 0)  # Add each event as a root node


def find_paths(G):
    """Finds paths with highest/lowest probability and longest/shortest durations."""
    best_path, worst_path = None, None
    longest_path, shortest_path = None, None
    best_mean_prob, worst_mean_prob = -1, float('inf')
    max_duration, min_duration = -1, float('inf')

    # Use nx.all_pairs_shortest_path for efficiency
    all_paths_dict = dict(nx.all_pairs_shortest_path(G))

    for source, paths_from_source in all_paths_dict.items():
        for target, path in paths_from_source.items():
            if source != target and all('pos' in G.nodes[node] for node in path):
                probabilities = [G.nodes[node]['pos'][1] for node in path]
                mean_prob = np.mean(probabilities)

                if mean_prob > best_mean_prob:
                    best_mean_prob = mean_prob
                    best_path = path
                if mean_prob < worst_mean_prob:
                    worst_mean_prob = mean_prob
                    worst_path = path

                x_positions = [G.nodes[node]['pos'][0] for node in path]
                duration = max(x_positions) - min(x_positions)

                if duration > max_duration:
                    max_duration = duration
                    longest_path = path
                if duration < min_duration and duration > 0:  # Avoid paths with 0 duration
                    min_duration = duration
                    shortest_path = path

    return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path

def draw_graph_plotly(G, title="3D Event Tree", highlight_color='gray'):
    """Draws the graph in 3D using Plotly and returns the HTML string."""
    pos = nx.get_node_attributes(G, 'pos')
    labels = nx.get_node_attributes(G, 'label')

    if not pos:
        print("Graph is empty. No nodes to visualize.")
        return ""

    x_vals, y_vals, z_vals = zip(*pos.values())

    node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
    node_trace = go.Scatter3d(x=x_vals, y=y_vals, z=z_vals, mode='markers+text',
                             marker=dict(size=10, color=node_colors, line=dict(width=1, color='black')),
                             text=list(labels.values()), textposition='top center', hoverinfo='text')

    edge_traces = []
    for edge in G.edges():
        x_start, y_start, z_start = pos[edge[0]]
        x_end, y_end, z_end = pos[edge[1]]
        edge_trace = go.Scatter3d(x=[x_start, x_end], y=[y_start, y_end], z=[z_start, z_end],
                                 mode='lines', line=dict(width=2, color=highlight_color), hoverinfo='none')
        edge_traces.append(edge_trace)

    layout = go.Layout(scene=dict(xaxis_title='Time', yaxis_title='Probability', zaxis_title='Event Number'),
                       title=title)
    fig = go.Figure(data=[node_trace] + edge_traces, layout=layout)

    # Convert Plotly figure to HTML string
    html_str = fig.to_html(full_html=False, include_plotlyjs='cdn')
    return html_str

def main(json_data):
    G = nx.DiGraph()
    build_graph_from_json(json_data, G)

    # Generate the HTML string for the Plotly graph
    html_graph = draw_graph_plotly(G)

    # ... (Rest of your code for finding paths)

    if best_path:
        best_path_graph = draw_graph_plotly(G.subgraph(best_path), title="Best Path", highlight_color='blue')
        html_graph += best_path_graph
    if worst_path:
        worst_path_graph = draw_graph_plotly(G.subgraph(worst_path), title="Worst Path", highlight_color='red')
        html_graph += worst_path_graph
    # ... (Similar for longest_path and shortest_path)

    return html_graph  # Return the HTML string