File size: 8,451 Bytes
85c02a6
 
a4844a1
 
 
 
6840d6b
a4844a1
 
ddfd741
6840d6b
ddfd741
 
6840d6b
ddfd741
 
 
6840d6b
 
ddfd741
a4844a1
ddfd741
6840d6b
 
ddfd741
6840d6b
 
ddfd741
6840d6b
88b1bc3
 
 
a4844a1
85c02a6
a4844a1
ddfd741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4844a1
88b1bc3
85c02a6
1c13cc9
 
 
85c02a6
1c13cc9
85c02a6
ddfd741
1c13cc9
85c02a6
 
 
 
 
1c13cc9
ddfd741
 
 
 
 
 
 
 
 
 
1c13cc9
85c02a6
 
1c13cc9
85c02a6
 
 
 
 
1c13cc9
85c02a6
 
1c13cc9
85c02a6
1c13cc9
85c02a6
 
 
 
 
1c13cc9
 
85c02a6
 
 
ddfd741
 
a4844a1
6840d6b
b3feaa3
ddfd741
6840d6b
 
85c02a6
6840d6b
ddfd741
a4844a1
ddfd741
85c02a6
 
a4844a1
ddfd741
 
 
 
 
 
 
 
 
 
 
85c02a6
b3feaa3
ddfd741
a4844a1
 
 
85c02a6
a4844a1
ddfd741
85c02a6
 
 
a4844a1
ddfd741
85c02a6
 
 
 
 
ddfd741
 
8e31850
711c0ff
a4844a1
1c13cc9
6840d6b
85c02a6
8e31850
85c02a6
a4844a1
 
85c02a6
 
a4844a1
85c02a6
 
8e31850
85c02a6
1c13cc9
8e31850
85c02a6
1c13cc9
 
85c02a6
 
 
 
 
 
 
 
8e31850
1c13cc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import networkx as nx
import numpy as np
import json
import sys
import random

def build_graph_from_json(json_data, G):
    """Builds a graph from JSON data."""
    def add_event(parent_id, event_data, depth):
        """Recursively adds events and subevents to the graph."""
        # Add the current event node
        node_id = len(G.nodes)
        prob = event_data['probability'] / 100.0  # Convert percentage to probability
        pos = (depth, prob, event_data['event_number'])  # Use event_number for z position
        label = event_data['name']  # Use event name as label
        G.add_node(node_id, pos=pos, label=label)
        if parent_id is not None:
            G.add_edge(parent_id, node_id)

        # Add child events
        subevents = event_data.get('subevents', {}).get('event', [])
        if not isinstance(subevents, list):
            subevents = [subevents]  # Ensure subevents is a list

        for subevent in subevents:
            add_event(node_id, subevent, depth + 1)

    # Iterate through all top-level events (this is the corrected part)
    for event_data in json_data.get('events', {}).values():
        add_event(None, event_data, 0)  # Add each event as a root node


def find_paths(G):
    """Finds the paths with the highest and lowest average probability,
       and the longest and shortest durations in graph G."""
    best_path = None
    worst_path = None
    longest_duration_path = None
    shortest_duration_path = None
    best_mean_prob = -1
    worst_mean_prob = float('inf')
    max_duration = -1
    min_duration = float('inf')

    for source in G.nodes:
        for target in G.nodes:
            if source != target:
                all_paths = list(nx.all_simple_paths(G, source=source, target=target))
                for path in all_paths:
                    # Check if all nodes in the path have the 'pos' attribute
                    if not all('pos' in G.nodes[node] for node in path):
                        continue  # Skip paths with nodes missing the 'pos' attribute

                    # Calculate the mean probability of the path
                    probabilities = [G.nodes[node]['pos'][1] for node in path]  # Get node probabilities
                    mean_prob = np.mean(probabilities)

                    # Evaluate path with the highest mean probability
                    if mean_prob > best_mean_prob:
                        best_mean_prob = mean_prob
                        best_path = path

                    # Evaluate path with the lowest mean probability
                    if mean_prob < worst_mean_prob:
                        worst_mean_prob = mean_prob
                        worst_path = path

                    # Calculate path duration
                    x_positions = [G.nodes[node]['pos'][0] for node in path]
                    duration = max(x_positions) - min(x_positions)

                    # Evaluate path with the longest duration
                    if duration > max_duration:
                        max_duration = duration
                        longest_duration_path = path

                    # Evaluate path with the shortest duration
                    if duration < min_duration:
                        min_duration = duration
                        shortest_duration_path = path

    return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path


def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
    """Draws only the specific path in 3D using networkx and matplotlib
       and saves the figure to a file."""
    # Create a subgraph containing only the nodes and edges of the path
    H = G.subgraph(path).copy()

    pos = nx.get_node_attributes(G, 'pos')

    # Get data for 3D visualization
    x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])

    fig = plt.figure(figsize=(16, 12))
    ax = fig.add_subplot(111, projection='3d')

    # Assign colors to nodes based on probability
    node_colors = []
    for node in path:
        prob = G.nodes[node]['pos'][1]
        if prob < 0.33:
            node_colors.append('red')
        elif prob < 0.67:
            node_colors.append('blue')
        else:
            node_colors.append('green')

    # Draw nodes
    ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)

    # Draw edges
    for edge in H.edges():
        x_start, y_start, z_start = pos[edge[0]]
        x_end, y_end, z_end = pos[edge[1]]
        ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)

    # Add labels to nodes
    for node, (x, y, z) in pos.items():
        if node in path:
            ax.text(x, y, z, str(node), fontsize=12, color='black')

    # Set labels and title
    ax.set_xlabel('Time (weeks)')
    ax.set_ylabel('Event Probability')
    ax.set_zlabel('Event Number')
    ax.set_title('3D Event Tree - Path')

    plt.savefig(filename, bbox_inches='tight')  # Save to file with adjusted margins
    plt.close()  # Close the figure to free resources


def draw_global_tree_3d(G, filename='global_tree.png'):
    """Draws the entire graph in 3D using networkx and matplotlib
       and saves the figure to a file."""
    pos = nx.get_node_attributes(G, 'pos')
    labels = nx.get_node_attributes(G, 'label')

    # Check if the graph is empty
    if not pos:
        print("Graph is empty. No nodes to visualize.")
        return

    # Get data for 3D visualization
    x_vals, y_vals, z_vals = zip(*pos.values())

    fig = plt.figure(figsize=(16, 12))
    ax = fig.add_subplot(111, projection='3d')

    # Assign colors to nodes based on probability
    node_colors = []
    for node, (x, prob, z) in pos.items():
        if prob < 0.33:
            node_colors.append('red')
        elif prob < 0.67:
            node_colors.append('blue')
        else:
            node_colors.append('green')

    # Draw nodes
    ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)

    # Draw edges
    for edge in G.edges():
        x_start, y_start, z_start = pos[edge[0]]
        x_end, y_end, z_end = pos[edge[1]]
        ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)

    # Add labels to nodes
    for node, (x, y, z) in pos.items():
        label = labels.get(node, f"{node}")
        ax.text(x, y, z, label, fontsize=12, color='black')

    # Set labels and title
    ax.set_xlabel('Time')
    ax.set_ylabel('Probability')
    ax.set_zlabel('Event Number')
    ax.set_title('3D Event Tree')

    plt.savefig(filename, bbox_inches='tight')  # Save to file with adjusted margins
    plt.close()  # Close the figure to free resources

def main(json_data):
    G = nx.DiGraph()
    build_graph_from_json(json_data, G)  # Build graph from the provided JSON data

    draw_global_tree_3d(G, filename='global_tree.png')

    best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)

    if best_path:
        print(f"\nPath with the highest average probability: {' -> '.join(map(str, best_path))}")
        print(f"Average probability: {best_mean_prob:.2f}")
    if worst_path:
        print(f"\nPath with the lowest average probability: {' -> '.join(map(str, worst_path))}")
        print(f"Average probability: {worst_mean_prob:.2f}")
    if longest_path:
        print(f"\nPath with the longest duration: {' -> '.join(map(str, longest_path))}")
        print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_path) - min(G.nodes[node]['pos'][0] for node in longest_path):.2f}")
    if shortest_path:
        print(f"\nPath with the shortest duration: {' -> '.join(map(str, shortest_path))}")
        print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}")

    if best_path:
        draw_path_3d(G, best_path, 'best_path.png', 'blue')
    if worst_path:
        draw_path_3d(G, worst_path, 'worst_path.png', 'red')
    if longest_path:
        draw_path_3d(G, longest_path, 'longest_duration_path.png', 'green')
    if shortest_path:
        draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')

    return ('global_tree.png','best_path.png','longest_duration_path.png')  # Return the filename of the global tree