Spaces:
Running
Running
File size: 7,766 Bytes
b4b5bdf e9698e9 3b8bb94 897ca82 9d31d4d e9698e9 9d31d4d e9698e9 3fcc7da 04ac399 b4b5bdf 51727c4 cb35787 0b9f9a6 e9199c3 8d33575 e9199c3 9d31d4d e9199c3 0b9f9a6 e9199c3 0f06abd 0b9f9a6 e9199c3 0b9f9a6 9d31d4d e9199c3 0b9f9a6 e9698e9 e9199c3 1203b67 1c9a7e6 0b55acb 897ca82 0b55acb 897ca82 9d31d4d 1c9a7e6 897ca82 0b55acb 9d31d4d 897ca82 9d31d4d 0b55acb a61504d 9d31d4d a61504d 9d31d4d a61504d 9d31d4d a61504d 4c27275 9d31d4d 4c27275 9d31d4d 4c27275 9d31d4d 4c27275 e9698e9 9d31d4d e9698e9 9d31d4d e9698e9 69a190d 71cffeb 2785052 0b9f9a6 e0e448c e9698e9 9d31d4d e9698e9 3fcc7da e9199c3 3fcc7da e0e448c e9698e9 3fcc7da 0b9f9a6 e9698e9 04ac399 9d31d4d 04ac399 e9698e9 91bd99a fe6af19 e9698e9 a61504d 3fcc7da 0b9f9a6 3fcc7da 0b9f9a6 3fcc7da e0e448c f55d652 e9698e9 0b9f9a6 e9698e9 b4b5bdf e9698e9 4c27275 e9698e9 dd89d2a fe6af19 e9698e9 a61504d e9698e9 a61504d 0b55acb 1c9a7e6 0b55acb e9698e9 a61504d 0b55acb 1c9a7e6 0b55acb e9698e9 a61504d e9698e9 4c27275 9d31d4d e941702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import logging
import os
import time
from datetime import datetime
from typing import Optional
import gradio as gr
import logfire
import pandas as pd
from buster.completers import Completion
from gradio.themes.utils import (
colors,
fonts,
get_matching_version,
get_theme_assets,
sizes,
)
import cfg
from cfg import setup_buster
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
AVAILABLE_SOURCES_UI = [
"Gen AI 360: LLMs",
"Gen AI 360: LangChain",
"Gen AI 360: Advanced RAG",
"Towards AI Blog",
"Activeloop Docs",
"HF Transformers Docs",
"Wikipedia",
# "OpenAI Docs",
"LangChain Docs",
]
AVAILABLE_SOURCES = [
"llm_course",
"langchain_course",
"advanced_rag_course",
"towards_ai",
"activeloop",
"hf_transformers",
"wikipedia",
# "openai",
"langchain_docs",
]
buster = setup_buster(cfg.buster_cfg)
# suppress httpx logs they are spammy and uninformative
logging.getLogger("httpx").setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def save_completion(completion: Completion, history):
collection = "completion_data-hf"
# Convert completion to JSON and ignore certain columns
completion_json = completion.to_json(
columns_to_ignore=["embedding", "similarity", "similarity_to_answer"]
)
# Add the current date and time to the JSON
completion_json["timestamp"] = datetime.now().isoformat()
completion_json["history"] = history
completion_json["history_len"] = len(history)
try:
cfg.mongo_db[collection].insert_one(completion_json)
logfire.info("Completion saved to db")
except Exception as e:
logfire.info(f"Something went wrong logging completion to db: {e}")
def log_likes(completion: Completion, like_data: gr.LikeData):
collection = "liked_data-test"
completion_json = completion.to_json(
columns_to_ignore=["embedding", "similarity", "similarity_to_answer"]
)
completion_json["liked"] = like_data.liked
logfire.info(f"User reported {like_data.liked=}")
try:
cfg.mongo_db[collection].insert_one(completion_json)
logfire.info("")
except:
logfire.info("Something went wrong logging")
def log_emails(email: gr.Textbox):
collection = "email_data-test"
logfire.info(f"User reported {email=}")
email_document = {"email": email}
try:
cfg.mongo_db[collection].insert_one(email_document)
logfire.info("")
except:
logfire.info("Something went wrong logging")
return ""
def format_sources(matched_documents: pd.DataFrame) -> str:
if len(matched_documents) == 0:
logfire.info("No sources found")
return ""
documents_answer_template: str = (
"📝 Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
)
document_template: str = (
"[🔗 {document.source}: {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %" # | # total chunks matched: {document.repetition:d}"
)
matched_documents.similarity_to_answer = (
matched_documents.similarity_to_answer * 100
)
matched_documents = matched_documents.sort_values(
"similarity_to_answer", ascending=False
).drop_duplicates("title", keep="first")
display_source_to_ui = {
ui: src for ui, src in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
}
matched_documents["source"] = matched_documents["source"].replace(
display_source_to_ui
)
documents = "\n".join(
[
document_template.format(document=document)
for _, document in matched_documents.iterrows()
]
)
footnote: str = "I'm a bot 🤖 and not always perfect."
return documents_answer_template.format(documents=documents, footnote=footnote)
def add_sources(history, completion):
formatted_sources = format_sources(completion.matched_documents)
history.append([None, formatted_sources])
return history
def user(user_input, history):
"""Adds user's question immediately to the chat."""
return "", history + [[user_input, None]]
def get_empty_source_completion(user_input):
return Completion(
user_inputs=user_input,
answer_text="You have to select at least one source from the dropdown menu.",
matched_documents=pd.DataFrame(),
error=False,
)
def get_answer(history, sources: Optional[list[str]] = None):
user_input = history[-1][0]
if len(sources) == 0:
completion = get_empty_source_completion(user_input)
else:
# Go to code names
display_ui_to_source = {
ui: src for ui, src in zip(AVAILABLE_SOURCES_UI, AVAILABLE_SOURCES)
}
sources_renamed = [display_ui_to_source[disp] for disp in sources]
completion = buster.process_input(user_input, sources=sources_renamed)
history[-1][1] = ""
for token in completion.answer_generator:
history[-1][1] += token
yield history, completion
theme = gr.themes.Soft()
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="blue",
font=[fonts.GoogleFont("Source Sans Pro"), fonts.GoogleFont("IBM Plex Mono")],
)
) as demo:
with gr.Row():
gr.Markdown(
"<h3><center>Towards AI 🤖: A Question-Answering Bot for anything AI-related</center></h3>"
"<h6><center><i>Powered by Activeloop and 4th Generation Intel® Xeon® Scalable Processors</i></center></h6>"
)
latest_completion = gr.State()
source_selection = gr.Dropdown(
choices=AVAILABLE_SOURCES_UI,
label="Select Sources",
value=AVAILABLE_SOURCES_UI,
multiselect=True,
)
chatbot = gr.Chatbot(elem_id="chatbot", show_copy_button=True)
with gr.Row():
question = gr.Textbox(
label="What's your question?",
placeholder="Ask a question to our AI tutor here...",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary")
with gr.Row():
examples = gr.Examples(
examples=cfg.example_questions,
inputs=question,
)
with gr.Row():
email = gr.Textbox(
label="Want to receive updates about our AI tutor?",
placeholder="Enter your email here...",
lines=1,
scale=3,
)
submit_email = gr.Button(value="Submit", variant="secondary", scale=0)
gr.Markdown(
"This application uses ChatGPT to search the docs for relevant information and answer questions."
"\n\n### Built in top of the open-source [Buster 🤖](https://www.github.com/jerpint/buster) project. Huge thanks to them."
)
completion = gr.State()
submit.click(user, [question, chatbot], [question, chatbot], queue=False).then(
get_answer, inputs=[chatbot, source_selection], outputs=[chatbot, completion]
).then(add_sources, inputs=[chatbot, completion], outputs=[chatbot]).then(
save_completion, inputs=[completion, chatbot]
)
question.submit(user, [question, chatbot], [question, chatbot], queue=False).then(
get_answer, inputs=[chatbot, source_selection], outputs=[chatbot, completion]
).then(add_sources, inputs=[chatbot, completion], outputs=[chatbot]).then(
save_completion, inputs=[completion, chatbot]
)
chatbot.like(log_likes, completion)
submit_email.click(log_emails, email, email)
email.submit(log_emails, email, email)
demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
demo.launch(debug=True, share=False)
|