kienngo's picture
First commit
d6f2683
import gradio as gr
import numpy as np
from PIL import Image
import onnxruntime
def preprocess_image(directory):
inputs = Image.open(directory)
new_img = np.array(inputs)
new_img = np.expand_dims(new_img.transpose((2, 0, 1)), 0)
new_img = ((new_img - 127.5) / 127.5).astype(np.float32)
return new_img
def color_map(N=256):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
cmap = np.zeros((N, 3), dtype=np.uint8)
for i in range(N):
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j)
g = g | (bitget(c, 1) << 7-j)
b = b | (bitget(c, 2) << 7-j)
c = c >> 3
cmap[i] = np.array([r, g, b])
return cmap
def decode_segmap(temp):
cmap = color_map()
r = temp.copy()
g = temp.copy()
b = temp.copy()
for l in range(0, 21):
r[temp == l] = cmap[l][0]
g[temp == l] = cmap[l][1]
b[temp == l] = cmap[l][2]
rgb = np.zeros((temp.shape[0], temp.shape[1], 3)).astype(np.uint8)
rgb[:, :, 0] = r
rgb[:, :, 1] = g
rgb[:, :, 2] = b
return rgb
def inference(image_dir):
ort_session = onnxruntime.InferenceSession("model.onnx", providers=["CPUExecutionProvider"])
image = preprocess_image(image_dir)
outputs = ort_session.run(
None,
{"pixel_values": image})
outputs = outputs[0].squeeze().argmax(axis=0)
cmap = decode_segmap(outputs)
return cmap
inputs_images = gr.components.Image(type="filepath", label="Input Image")
outputs_images = gr.components.Image(type="numpy", label="Output Image")
app = gr.Interface(
fn=inference,
inputs=inputs_images,
outputs=outputs_images,
title="Semantic segmentation",
cache_examples=False,)
app.launch()