tristan-deep commited on
Commit
969f59e
·
1 Parent(s): 609acff

replaced load_image

Browse files
Files changed (5) hide show
  1. app.py +2 -2
  2. eval.py +1 -1
  3. main.py +2 -1
  4. sweeper.py +2 -1
  5. utils.py +30 -0
app.py CHANGED
@@ -7,10 +7,10 @@ import gradio as gr
7
  import jax
8
  import numpy as np
9
  import spaces
10
- import zea
11
  from PIL import Image
12
 
13
  from main import Config, init, run
 
14
 
15
  CONFIG_PATH = "configs/semantic_dps.yaml"
16
  SLIDER_CONFIG_PATH = "configs/slider_params.yaml"
@@ -127,7 +127,7 @@ example_image_paths = [
127
  for f in os.listdir(ASSETS_DIR)
128
  if f.lower().endswith(".png")
129
  ]
130
- example_images = [zea.io_lib.load_image(p) for p in example_image_paths]
131
  examples = [[img] for img in example_images]
132
 
133
 
 
7
  import jax
8
  import numpy as np
9
  import spaces
 
10
  from PIL import Image
11
 
12
  from main import Config, init, run
13
+ from utils import load_image
14
 
15
  CONFIG_PATH = "configs/semantic_dps.yaml"
16
  SLIDER_CONFIG_PATH = "configs/slider_params.yaml"
 
127
  for f in os.listdir(ASSETS_DIR)
128
  if f.lower().endswith(".png")
129
  ]
130
+ example_images = [load_image(p) for p in example_image_paths]
131
  examples = [[img] for img in example_images]
132
 
133
 
eval.py CHANGED
@@ -9,10 +9,10 @@ from PIL import Image
9
  from scipy.ndimage import binary_erosion, distance_transform_edt
10
  from scipy.stats import ks_2samp
11
  from zea import log
12
- from zea.io_lib import load_image
13
 
14
  import fid_score
15
  from plots import plot_metrics
 
16
 
17
 
18
  def calculate_fid_score(denoised_image_dirs, ground_truth_dir):
 
9
  from scipy.ndimage import binary_erosion, distance_transform_edt
10
  from scipy.stats import ks_2samp
11
  from zea import log
 
12
 
13
  import fid_score
14
  from plots import plot_metrics
15
+ from utils import load_image
16
 
17
 
18
  def calculate_fid_score(denoised_image_dirs, ground_truth_dir):
main.py CHANGED
@@ -28,6 +28,7 @@ from plots import create_animation, plot_batch_with_named_masks, plot_dehazed_re
28
  from utils import (
29
  apply_bottom_preservation,
30
  extract_skeleton,
 
31
  postprocess,
32
  preprocess,
33
  smooth_L1,
@@ -374,7 +375,7 @@ def main(
374
 
375
  images = []
376
  for path in paths:
377
- image = zea.io_lib.load_image(path)
378
  images.append(image)
379
  images = ops.stack(images, axis=0)
380
 
 
28
  from utils import (
29
  apply_bottom_preservation,
30
  extract_skeleton,
31
+ load_image,
32
  postprocess,
33
  preprocess,
34
  smooth_L1,
 
375
 
376
  images = []
377
  for path in paths:
378
+ image = load_image(path)
379
  images.append(image)
380
  images = ops.stack(images, axis=0)
381
 
sweeper.py CHANGED
@@ -23,6 +23,7 @@ from zea import init_device, log
23
 
24
  from eval import evaluate
25
  from main import init, run
 
26
 
27
 
28
  def load_images_from_dir(input_folder):
@@ -31,7 +32,7 @@ def load_images_from_dir(input_folder):
31
 
32
  images = []
33
  for path in paths:
34
- image = zea.io_lib.load_image(path)
35
  images.append(image)
36
 
37
  if len(images) == 0:
 
23
 
24
  from eval import evaluate
25
  from main import init, run
26
+ from utils import load_image
27
 
28
 
29
  def load_images_from_dir(input_folder):
 
32
 
33
  images = []
34
  for path in paths:
35
+ image = load_image(path)
36
  images.append(image)
37
 
38
  if len(images) == 0:
utils.py CHANGED
@@ -1,5 +1,8 @@
 
 
1
  import numpy as np
2
  from keras import ops
 
3
  from skimage import filters, morphology
4
  from zea.utils import translate
5
 
@@ -131,3 +134,30 @@ def extract_skeleton(images, input_range, sigma_pre=4, sigma_post=4, threshold=0
131
  skeleton_masks = (skeleton_masks - min_val) / (max_val - min_val + 1e-8)
132
 
133
  return ops.convert_to_tensor(skeleton_masks, dtype=images.dtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
  import numpy as np
4
  from keras import ops
5
+ from PIL import Image
6
  from skimage import filters, morphology
7
  from zea.utils import translate
8
 
 
134
  skeleton_masks = (skeleton_masks - min_val) / (max_val - min_val + 1e-8)
135
 
136
  return ops.convert_to_tensor(skeleton_masks, dtype=images.dtype)
137
+
138
+
139
+ def load_image(filename, grayscale=True):
140
+ """Load an image file and return a numpy array using PIL.
141
+
142
+ Args:
143
+ filename (str): The path to the image file.
144
+ grayscale (bool, optional): Whether to convert the image to grayscale. Defaults to True.
145
+
146
+ Returns:
147
+ numpy.ndarray: A numpy array of the image.
148
+
149
+ Raises:
150
+ FileNotFoundError: If the file does not exist.
151
+ """
152
+ filename = Path(filename)
153
+ if not filename.exists():
154
+ raise FileNotFoundError(f"File {filename} does not exist")
155
+
156
+ img = Image.open(filename)
157
+ if grayscale:
158
+ img = img.convert("L")
159
+ else:
160
+ img = img.convert("RGB")
161
+
162
+ arr = np.array(img)
163
+ return arr