Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
cc05eca
1
Parent(s):
4658d29
readme spaces and github compatibility
Browse files- .github/README.md +47 -0
- README.md +19 -47
.github/README.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
<h1>Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing</h1>
|
3 |
+
<p>
|
4 |
+
<a href="https://arxiv.org/abs/0000.0000"><img src="https://img.shields.io/badge/arXiv-0000.0000-b31b1b.svg?logo=arXiv" alt="arXiv"></a>
|
5 |
+
<a href="https://huggingface.co/collections/tristan-deep/semantic-diffusion-posterior-sampling-for-cardiac-ultrasound-68a70559a7f719c7e6bd5788"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Model-orange" alt="Hugging Face Model"></a>
|
6 |
+
<a href="https://keras.io/"><img src="https://img.shields.io/badge/Keras-EE4C2C?logo=keras&logoColor=white" alt="Keras"></a>
|
7 |
+
</p>
|
8 |
+
<h3>
|
9 |
+
<a href="https://tristan-deep.github.io/">Tristan Stevens</a> |
|
10 |
+
<a href="https://oisinnolan.github.io/">Oisín Nolan</a> |
|
11 |
+
<a href="https://www.tue.nl/en/research/researchers/ruud-van-sloun">Ruud van Sloun</a>
|
12 |
+
</h3>
|
13 |
+
<p>Eindhoven University of Technology, the Netherlands</p>
|
14 |
+
</div>
|
15 |
+
|
16 |
+
<p align="center">
|
17 |
+
<img src="./paper/animation.gif" alt="Cardiac Ultrasound Dehazing Animation" style="max-width: 100%; height: auto;">
|
18 |
+
</p>
|
19 |
+
|
20 |
+
### Installation
|
21 |
+
|
22 |
+
The algorithm is implemented using Keras with JAX backend. Furthermore it heavily relies on the [zea ultrasound library](https://github.com/tue-bmd/zea).
|
23 |
+
|
24 |
+
Either install the following in your Python environment, or use the [Dockerfile](./Dockerfile) provided in this repository.
|
25 |
+
|
26 |
+
```bash
|
27 |
+
# requires Python>=3.10
|
28 |
+
pip install tyro optuna zea==0.0.4
|
29 |
+
pip install -U "jax[cuda12]"
|
30 |
+
```
|
31 |
+
|
32 |
+
> [!NOTE]
|
33 |
+
> Although the code was primarily tested with JAX as the Keras backend, TensorFlow and PyTorch should also work.
|
34 |
+
|
35 |
+
### Running the algorithm
|
36 |
+
|
37 |
+
Some example images are downloaded in the [./assets](./assets) folder. The models are automatically downloaded from the [Hugging Face Model Hub](https://huggingface.co/collections/tristan-deep/semantic-diffusion-posterior-sampling-for-cardiac-ultrasound-68a70559a7f719c7e6bd5788).
|
38 |
+
|
39 |
+
```bash
|
40 |
+
python main.py --input-folder ./assets --output-folder ./temp
|
41 |
+
```
|
42 |
+
|
43 |
+
Alternatively, you can use the Gradio app provided in this repository to interact with the model via a web interface. To launch the app, run:
|
44 |
+
|
45 |
+
```bash
|
46 |
+
python app.py
|
47 |
+
```
|
README.md
CHANGED
@@ -1,47 +1,19 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
### Installation
|
21 |
-
|
22 |
-
The algorithm is implemented using Keras with JAX backend. Furthermore it heavily relies on the [zea ultrasound library](https://github.com/tue-bmd/zea).
|
23 |
-
|
24 |
-
Either install the following in your Python environment, or use the [Dockerfile](./Dockerfile) provided in this repository.
|
25 |
-
|
26 |
-
```bash
|
27 |
-
# requires Python>=3.10
|
28 |
-
pip install tyro optuna zea==0.0.4
|
29 |
-
pip install -U "jax[cuda12]"
|
30 |
-
```
|
31 |
-
|
32 |
-
> [!NOTE]
|
33 |
-
> Although the code was primarily tested with JAX as the Keras backend, TensorFlow and PyTorch should also work.
|
34 |
-
|
35 |
-
### Running the algorithm
|
36 |
-
|
37 |
-
Some example images are downloaded in the [./assets](./assets) folder. The models are automatically downloaded from the [Hugging Face Model Hub](https://huggingface.co/collections/tristan-deep/semantic-diffusion-posterior-sampling-for-cardiac-ultrasound-68a70559a7f719c7e6bd5788).
|
38 |
-
|
39 |
-
```bash
|
40 |
-
python main.py --input-folder ./assets --output-folder ./temp
|
41 |
-
```
|
42 |
-
|
43 |
-
Alternatively, you can use the Gradio app provided in this repository to interact with the model via a web interface. To launch the app, run:
|
44 |
-
|
45 |
-
```bash
|
46 |
-
python app.py
|
47 |
-
```
|
|
|
1 |
+
---
|
2 |
+
title: "Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing"
|
3 |
+
emoji: "🫀"
|
4 |
+
colorFrom: "red"
|
5 |
+
colorTo: "purple"
|
6 |
+
sdk: "gradio"
|
7 |
+
sdk_version: "5.43.1"
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
tags:
|
11 |
+
- diffusion
|
12 |
+
- ultrasound
|
13 |
+
- dehazing
|
14 |
+
- keras
|
15 |
+
- jax
|
16 |
+
- medical-imaging
|
17 |
+
- huggingface
|
18 |
+
author: Tristan Stevens, Oisín Nolan, Ruud van Sloun
|
19 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|