import gradio as gr import jax import numpy as np import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from PIL import Image from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel import cv2 def create_key(seed=0): return jax.random.PRNGKey(seed) def canny_filter(image): gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0) edges_image = cv2.Canny(blurred_image, 50, 200) return edges_image # load control net and stable diffusion v1-5 controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "tsungtao/controlnet-mlsd-202305011046", from_flax=True, dtype=jnp.bfloat16 ) #controlnet.save_pretrained("tsungtao/controlnet-mlsd-202305011046",params=controlnet_params) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 ) def infer(prompts, negative_prompts, image): params["controlnet"] = controlnet_params num_samples = 1 #jax.device_count() rng = create_key(0) rng = jax.random.split(rng, jax.device_count()) im = canny_filter(image) canny_image = Image.fromarray(im) prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) p_params = replicate(params) prompt_ids = shard(prompt_ids) negative_prompt_ids = shard(negative_prompt_ids) processed_image = shard(processed_image) output = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, num_inference_steps=50, neg_prompt_ids=negative_prompt_ids, jit=True, ).images output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) return output_images title = "ControlNet MLSD" description = "This is a demo on ControlNet MLSD." examples = [["living room with TV", "fan", "image_01.jpg"], ["a living room with hardwood floors and a flat screen tv", "sea", "image_02.jpg"], ["a living room with a fireplace and a view of the ocean", "pendant", "image_03.jpg"] ] with gr.Blocks() as demo: gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery", title = title, description = description, examples = examples, theme='gradio/soft') gr.Markdown( """ * * * * [Dataset](https://huggingface.co/datasets/tsungtao/diffusers-testing) * [Diffusers model](https://huggingface.co/runwayml/stable-diffusion-v1-5) * [Training Report](https://wandb.ai/tsungtao0311/controlnet-mlsd-202305011046/runs/ezfn6bkz?workspace=user-tsungtao0311) """) # with gr.Accordion("Open for More!"): # gr.Markdown("Team:https://huggingface.co/ellljoy, https://huggingface.co/zenkig, https://huggingface.co/aze555, https://huggingface.co/tsungtao, https://huggingface.co/Mayyu") gr.Markdown("* * *") # gr.Markdown(""" """) demo.launch()